BackgroundThe purpose of the work was to evaluate the incremental diagnostic value of free-breathing, contrast-enhanced, whole-heart, 3 T cardiovascular magnetic resonance coronary angiography (CE-MRCA) to stress/rest myocardial perfusion imaging (MPI) and late gadolinium enhancement (LGE) imaging for detecting coronary artery disease (CAD).MethodsFifty-one patients with suspected CAD underwent a comprehensive cardiovascular magnetic resonance (CMR) examination (CE-MRCA, MPI, and LGE). The additive diagnostic value of MRCA to MPI and LGE was evaluated using invasive x-ray coronary angiography (XA) as the standard for defining functionally significant CAD (≥ 50% stenosis in vessels > 2 mm in diameter).Results90.2% (46/51) patients (54.0 ± 11.5 years; 71.7% men) completed CE-MRCA successfully. On per-patient basis, compared to MPI/LGE alone or MPI alone, the addition of MRCA resulted in higher sensitivity (100% vs. 76.5%, p < 0.01), no change in specificity (58.3% vs. 66.7%, p = 0.6), and higher accuracy (89.1% vs 73.9%, p < 0.01) for CAD detection (prevalence = 73.9%). Compared to LGE alone, the addition of CE-MRCA resulted in higher sensitivity (97.1% vs. 41.2%, p < 0.01), inferior specificity (83.3% vs. 91.7%, p = 0.02), and higher diagnostic accuracy (93.5% vs. 54.3%, p < 0.01).ConclusionThe inclusion of successful free-breathing, whole-heart, 3 T CE-MRCA significantly improved the sensitivity and diagnostic accuracy as compared to MPI and LGE alone for CAD detection.
To evaluate the accuracy and feasibility of right ventricular function parameters measurement using 320-slice volume cardiac CT. Retrospective analysis of 50 consecutive patients (23 men, 27 women) with suspected pulmonary diseases was performed in electrocardiogram (ECG)-gated cardiac CT and cardiac magnetic resonance (CMR). Parameters including right ventricular end-diastolic volume (RVEDV), right ventricular end- systolic volume (RVESV), right ventricular stroke volume (RVSV), right ventricular cardiac output (RVCO), and right ventricular ejection fraction (RVEF) were semi-automatically and separately calculated from both CT and CMR data. Significant difference between measurements was measured by paired t test and two-variable linear regression analysis with Pearson's correlation coefficient. Bland-Altman analysis was performed in each pair of parameters. There was little variability between the measurements by the two observers (kappa = 0.895-0.980, P < 0.05). There was good correlation between all parameters obtained by CT and CMR (P < 0.001): RVEDV (108.5 ± 21.9 ml, 113.5 ± 24.8 ml, r = 0.944), RVESV (69.8 ± 33.4 ml, 73.2 ± 35.4 ml, r = 0.972), RVSV (39.0 ± 13.2 ml, 40.2 ± 13.3 ml, r = 0.977), RVCO (2.6 ± 0.7 l, 2.6 ± 0.7 l. r = 0.958), RVEF (38.8 ± 19.1 %, 39.1 ± 19.3 %, r = 0.990), and there was no significant difference between CT and CMR measurements in RVEF (n = 50, t = -0.677, P > 0.05). 320-slice volume cardiac CT is an accurate non-invasive technique to evaluate RV function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.