The Qinling Mountain range constitutes a critical boundary for climate and vegetation distribution in eastern central mainland China owing to its importance as a geographic demarcation line. In this article, cores from 88 Chinese pines (Pinus tabulaeformis) from the southern (MW site) and northern (NWT site) slopes of the Qinling Mountains were used to reconstruct seasonal temperature variations. During the calibration period, significant correlations were found between ring width and the mean temperature from prior September to current April of 0.76 at the southern slope, and between ring width and the mean May–July temperature of 0.67 at the northern slope. The subsequent temperature reconstructions span 1760–2005 for the northern site and 1837–2006 for the southern site. Prior to the mid‐20th century, low September–April temperatures were, in general, followed by high May–July temperatures, probably reflecting variations in the winter and summer monsoon. However, since the mid‐20th century, both records show trends of a more pronounced increase in September–April temperature on the southern slope. The results provide independent support for the interpretation that recent warming is unusual in nature, coinciding with the observed record. The results compare well with tree‐ring based reconstructions from the surrounding regions, suggesting regional signals in the Qinling Mountain reconstructions.
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.
This study aims to clarify the effects of exercise on levels of appetite regulatory hormones in plasma and hypothalamus of obese rats. Diet-induced obese rats undergo short- (40 min) and long-term (40 min, 5 days/week for 8 weeks) exercises. The rats ran at a speed of 20 m/min on a 5 degrees slope treadmill. Rats undergoing short-term exercise were divided into C, E0, E1, E3, E12, and E24. Rats undergoing long-term exercise (LE) were compared to long-term control (LC). Concentrations of ghrelin, obestatin, and neuropeptide Y (NPY) were measured using radio immuno-assay. Expression of ghrelin receptor (GHSR-1a), putative obestatin receptor (GPR-39), and NPY in the hypothalamus was measured by quantitative RT-PCR. After short-term exercise, the plasma concentrations of ghrelin and obestatin were not changed, but NPY decreased. Ghrelin and obestatin in the hypothalamus decreased, and recovered 12 until 24 h. NPY increased and recovered after 24 h. Expression of GHSR-1a and NPY was not changed and GPR-39 was not observed. In LE, these changes are different in plasma and hypothalamus. It would be concluded appetite and body weight of obese rats are decreased by exercise through reduced level of ghrelin in the hypothalamus. Obestatin seems to have no effect in exercise-induced change in appetite.
Background Gene copy number variations (CNVs) contribute to genetic diversity and disease prevalence across populations. Substantial efforts have been made to decipher the relationship between CNVs and pathogenesis but with limited success. Results We have developed a novel computational framework X-CNV (www.unimd.org/XCNV), to predict the pathogenicity of CNVs by integrating more than 30 informative features such as allele frequency (AF), CNV length, CNV type, and some deleterious scores. Notably, over 14 million CNVs across various ethnic groups, covering nearly 93% of the human genome, were unified to calculate the AF. X-CNV, which yielded area under curve (AUC) values of 0.96 and 0.94 in training and validation sets, was demonstrated to outperform other available tools in terms of CNV pathogenicity prediction. A meta-voting prediction (MVP) score was developed to quantitively measure the pathogenic effect, which is based on the probabilistic value generated from the XGBoost algorithm. The proposed MVP score demonstrated a high discriminative power in determining pathogenetic CNVs for inherited traits/diseases in different ethnic groups. Conclusions The ability of the X-CNV framework to quantitatively prioritize functional, deleterious, and disease-causing CNV on a genome-wide basis outperformed current CNV-annotation tools and will have broad utility in population genetics, disease-association studies, and diagnostic screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.