Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RISaided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver.To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver. An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based
In this paper, a novel technique, called symbiotic radio (SR), is proposed for passive Internetof-Things (IoT), in which a backscatter device (BD) is integrated with a primary transmission. The primary transmitter is designed to assist the primary and BD transmissions, and the primary receiver decodes the information from the primary transmitter as well as the BD. We consider a multiple-input single-output (MISO) SR and the symbol period for BD transmission is designed to be either the same as or much longer than that of the primary system, resulting in parasitic or commensal relationship between the primary and BD transmissions. We first derive the achievable rates for the primary system and the BD transmission. Then, we formulate two transmit beamforming optimization problems, i.e., the weighted sum-rate maximization problem and the transmit power minimization problem, and solve these non-convex problems by applying semi-definite relaxation technique. In addition, a novel transmit beamforming structure is proposed to reduce the computational complexity of the solutions. Simulation results show that when the BD transmission rate is properly designed, the proposed SR not only enables the opportunistic transmission for the BD via energy-efficient passive backscattering, but also enhances the achievable rate of the primary system by properly exploiting the additional signal path from the BD. This paper has been presented in part at
In this paper, we are interested in a symbiotic radio (SR) system, in which a passive full-duplex backscatter device (BD) is parasitic in an active primary transmission. The primary transmitter (PT) with multiple antennas is designed to broadcast common messages to the primary receiver (PR) and the BD, as well as to support passive information transmission from the BD to the PR. To do so, the full-duplex BD absorbs a fraction of the incident signal from the PT to decode the common messages and simultaneously transmits its own information to the PR by backscattering the remaining part of the incident signal. We derive the achievable rates of the BD transmission with Gaussian and quadrature amplitude modulation codewords. We also formulate a transmit power minimization problem by jointly designing the beamforming vector at the PT and the power splitting factor at the BD. This problem is first solved by the semi-definite relaxation technique together with a one-dimensional linear exhaustive search over the power splitting factor. Then, a suboptimal but low-complexity solution with closed-form expressions is proposed. The simulation results have shown that the proposed suboptimal solution achieves almost the same performance as that obtained by the exhaustive search. In addition, our proposed SR system with the full-duplex BD outperforms the half-duplex system with the time-division-multiplexing mode in general.INDEX TERMS Symbiotic radio, backscatter communication, Internet-of-Things (IoT), full-duplex, optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.