In feeder automation transformation there are difficulties in equipment and location selection. To help with this, an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is proposed. It analyzes the coordination relationship of the three most common types of automation equipment, i.e., fault indicator, over-current trip switch and non-voltage trip switch in the fault handling process, and the explicit expressions of power outage time caused by a fault on different layouts of the above three types of equipment are given. Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital investment and power interruption cost, a mixed-integer quadratic programming model for optimal layout is established, in which the functional failure probability of equipment is linearized using the $$3\delta$$ 3 δ principle in statistics. Finally, the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system. It can not only take into account fault location and fault isolation to enhance user power consumption perception, but also can guide precise investment to improve the operational quality and efficiency of a power company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.