Deep Neural Networks (DNNs) have been widely applied in various recognition tasks. However, recently DNNs have been shown to be vulnerable against adversarial examples, which can mislead DNNs to make arbitrary incorrect predictions. While adversarial examples are well studied in classification tasks, other learning problems may have different properties. For instance, semantic segmentation requires additional components such as dilated convolutions and multiscale processing. In this paper, we aim to characterize adversarial examples based on spatial context information in semantic segmentation. We observe that spatial consistency information can be potentially leveraged to detect adversarial examples robustly even when a strong adaptive attacker has access to the model and detection strategies. We also show that adversarial examples based on attacks considered within the paper barely transfer among models, even though transferability is common in classification. Our observations shed new light on developing adversarial attacks and defenses to better understand the vulnerabilities of DNNs.
We explore a key architectural aspect of deep convolutional neural networks: the pattern of internal skip connections used to aggregate outputs of earlier layers for consumption by deeper layers. Such aggregation is critical to facilitate training of very deep networks in an end-to-end manner. This is a primary reason for the widespread adoption of residual networks, which aggregate outputs via cumulative summation. While subsequent works investigate alternative aggregation operations (e.g. concatenation), we focus on an orthogonal question: which outputs to aggregate at a particular point in the network. We propose a new internal connection structure which aggregates only a sparse set of previous outputs at any given depth. Our experiments demonstrate this simple design change offers superior performance with fewer parameters and lower computational requirements. Moreover, we show that sparse aggregation allows networks to scale more robustly to 1000+ layers, thereby opening future avenues for training long-running visual processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.