All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs.
Fabricating ternary solar cells is a pivotal strategy to improve the power conversion efficiencies (PCEs) of organic photovoltaic devices. However, it is still a challenge to simultaneously improve the performance parameters of ternary devices. Therefore, the third ingredient in ternary blends should be precisely designed or selected. Herein, a new medium‐bandgap small‐molecule acceptor, namely, 3,9‐bis(2‐methylene‐(3‐(1‐(3,5‐dimethylphenyl)‐1cyanomethylene)indanone))‐5,5,11,11‐tetrakis‐(4‐hexylphenyl)dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]dithiophene (ITIF), is synthesized by end‐capping with a new fluorinated, asymmetric terminal group, (Z)‐2‐(3,5‐difluorophenyl)‐2‐(3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene) acetonitrile. Replacing the CN substituent with the asymmetric 3,5‐difluorophenyl substituent obviously up‐shifts the lowest unoccupied molecular orbital (LUMO) level of ITIF to −3.78 eV, enlarges the bandgap to 1.82 eV, and improves the absorption coefficient to ≈50% higher than that of 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)indanone))‐5,5,11,11‐tetrakis‐(4‐hexylphenyl)dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]dithiophene (ITIC). Due to the similar structures, ITIF and ITIC can combine as an alloyed acceptor, which makes it convenient to tune the morphology and optical and electrochemical properties of ternary blends. The enhanced absorption coefficient of ITIF and the rapid fluorescence resonance energy transfer from ITIF to ITIC remarkably improve the absorption of the ternary blend film, hence compensating for the external quantum efficiency (EQE) curves. When ITIF is introduced into ternary solar cells based on poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione)] (PBDB‐T):ITIF:ITIC blends, the PCEs of the ternary devices are increased from 9.2% to 10.5%, and the short‐circuit currents, open‐circuit voltages, and fill factors are simultaneously improved.
Terpolymers have been proven to be promising polymer donors for organic solar cells (OSCs). However, the aperiodic sequence distribution caused by random copolymerization dramatically interrupts the orderly stacking of the...
Although benzoazole-fused rings with strong quinoid character have successfully been used to construct high-performance small-molecule nonfullerene acceptors (NFAs), studies into how these units influence the stabilities of NFAs and their corresponding device performances are few to date. To address it, four new NFAs, SSTI, SNTI, NTI and NTTI, which adopt BBT, TBZ, and BTAZ as the cores, respectively, are designed and investigated. It is found that SSTI and SNTI based on BBT and TBZ cores with stronger quinoid resonance effects show features of more red-shifted absorptions and deeper energy levels, but worse thermal and light stabilities than NTI and NTTI with a BTAZ core, especially in solutions and/or films blended with polymer donors. Through matrix-assisted laser desorption ionization time of flight mass spectrometry analysis of the degradation products, it is disclosed that the C═C double bond cleavage would be accelerated by stronger quinoid effects. Therefore, NTI and NTTI with relatively weaker quinoid characteristics show improved photovoltaic properties. Especially, NTTI based devices yield a good efficiency of 8.61% as the side chains on sp3-hybrid C atoms can prevent the formation of large aggregates. These findings can provide invaluable knowledge for the molecular design of NFAs with both high-efficiency and high-stability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.