Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells.Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC.This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment. K E Y W O R D Shepatocellular carcinoma, miR-106a-5p, progression, PTEN, TCL6
Methylation of the WIF-1 gene can lead to the loss of WIF-1 expression which has been observed in numerous types of cancer including NSCLC. However, the association and clinicopathological significance between WIF-1 promoter hypermethylation and NSCLC remains unclear. In the present study, we performed a meta-analysis to evaluate the clinicopathological significance of WIF-1 hypermethylation in NSCLC. A systematic literature search was carried out using Pubmed, EMBASE, Web of Science and CNKI. The Cochrane software Review manager 5.2 was used. The frequency of WIF-1 hypermethylation was significantly increased in NSCLC compared with normal lung tissue; the pooled OR was 8.67 with 95% CI 1.64-45.88, p = 0.01. The rate of WIF-1 hypermethylation was higher in SCC than in AC, OR was 1.74 with 95% CI 0.97-3.11, p = 0.06. In addition, WIF-1 loss was correlated with low 5-year survival rate. In summary, WIF-1 hypermethylation is a potential biomarker for diagnosis of NSCLC. WIF-1 hypermethylation is predominant in squamous cell carcinoma (SCC), suggesting that WIF-1 methylation contributes to the development of NSCLC, especially SCC.
Background The main purpose of this study was to identify the correlation between the expression of long non-coding RNA (lncRNA) HAGLR in plasma exosomes and the detection rate of circulating tumor cells (CTCs) in patients with non-small cell lung cancer (NSCLC). Methods LncRNA HAGLR expression was detected in plasma exosomes of 40 patients with NSCLC and 8 healthy subjects using qRT-PCR. CTCs were enriched and separated using CTC-BIOPSY ® abnormal cell separator. The correlations between lncRNA HAGLR expression in plasma exosomes and CTCs of patients with NSCLC and clinical pathological parameters were also analyzed. Bioinformatics analyses indicated HAGLR was evidently down-regulated in NSCLC tissues when compared to normal controls. The relationship between differential expression of HAGLR with different stages of NSCLC and clinical prognosis were elucidated using corresponding statistical methods. Results HAGLR was significantly decreased in NSCLC, and there was obvious correlation with overall survival (P<0.05). CTCs were detected in peripheral blood of patients with NSCLC with the positive rate of 70.0%. In lung squamous cell carcinoma (LUSC), compared with the high expression group of HAGLR, the low expression group had a better overall survival (P<0.05). At the same time, the high expression of HAGLR was positively correlated with the high detection rate of CTCs (P<0.05), suggesting that the disease may have a later tumor stage, and poor prognosis. Conclusions lncRNA HAGLR and CTCs could be used as potential biomarkers for NSCLC metastasis risk prediction.
BackgroundThe anticancer effects of cordyceps on various tumors have been reported. However, little is known about the role of selenium (Se)-enriched Cordyceps militaris in non-small cell lung cancer (NSCLC). In this study, the effects of Se-enriched Cordyceps militaris on cell proliferation, cell apoptosis and cell cycle in NSCLC cell line NCI-H292 and A549 were investigated.MethodsCCK-8 assay was used to determine the appropriate concentrations of Se-enriched Cordyceps militaris in NSCLC (namely NCI-H292 and A549) cells. Colony formation assay, flow cytometric and Hoechst 33342 staining assays, and flow cytometric analysis were separately employed to assess the effect of increased Se-enriched Cordyceps militaris on NSCLC cell viability, cell apoptosis and cell-cycle distribution. Finally, the qPCR and Western blot assays were, respectively, applied to evaluate the effects of Se-enriched Cordyceps militaris on the expression of pro-apoptotic member BAX and the anti-apoptotic member BCL-2, as well as of G2/M cell cycle regulatory proteins CDK1 and cyclin B1.ResultsThe concentration of Se-enriched Cordyceps militaris was 0, 4, 8, 12 mg/mL for NCI-H292 cells, and 0, 12.5, 25, 50 mg/mL for A549 cells. NSCLC cells treated with increased Se-enriched Cordyceps militaris showed the inhibited cell viability. Se-enriched Cordyceps militaris induced NSCLC cell apoptosis in concentration-dependent manner. Consistently, Se-enriched Cordyceps militaris diminished the ratio of anti-apoptotic member BCL-2 and pro-apoptotic member BAX at mRNA and protein levels in NSCLC cells. The percentage in G2/M phase was increased in NSCLC cells treated with increased Se-enriched Cordyceps militaris. Downregulation of G2/M cell cycle regulatory proteins CDK1 and cyclin B1 at mRNA and protein levels in NSCLC cells further confirmed the effects of Se-enriched Cordyceps militaris on cell cycle.ConclusionThis study demonstrated the inhibitory role of Se-enriched Cordyceps militaris in cell proliferation and its facilitating role in cell apoptosis and cell cycle in NSCLC cells, suggesting an alternative therapeutic strategy for NSCLC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.