Plasmon electronic dephasing lifetime is one of the most important characteristics of localized surface plasmons, which is crucial both for understanding the related photophysics and for their applications in photonic and optoelectronic devices. This lifetime is generally shorter than 100 fs and measured using the femtosecond pump–probe technique, which requires femtosecond laser amplifiers delivering pulses with a duration even as short as 10 fs. This implies a large-scale laser system with complicated pulse compression schemes, introducing high-cost and technological challenges. Meanwhile, the strong optical pulse from an amplifier induces more thermal-related effects, disturbing the precise resolution of the pure electronic dephasing lifetime. In this work, we use a simple autocorrelator design and integrate it with the sample of plasmonic nanostructures, where a femtosecond laser oscillator supplies the incident pulses for autocorrelation measurements. Thus, the measured autocorrelation trace carries the optical modulation on the incident pulses. The dephasing lifetime can be thus determined by a comparison between the theoretical fittings to the autocorrelation traces with and without the plasmonic modulation. The measured timescale for the autocorrelation modulation is an indirect determination of the plasmonic dephasing lifetime. This supplies a simple, rapid, and low-cost method for quantitative characterization of the ultrafast optical response of localized surface plasmons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.