All-solid-state batteries (ASSBs) have gained considerable attention due to their inherent safety and high energy density. However, fabricating ultrathin and freestanding solid electrolyte membranes for practical all-solid-state pouch cells remains challenging. In this work, polytetrafluoroethylene (PTFE) fibrilization was utilized to interweave inorganic solid electrolytes (SEs) into freestanding membranes. Representative SE membranes, including
Solid‐state electrolytes (SEs) with high anodic (oxidation) stability are essential for achieving all‐solid‐state Li‐ion batteries (ASSLIBs) operating at high voltages. Until now, halide‐based SEs have been one of the most promising candidates due to their compatibility with cathodes and high ionic conductivity. However, the developed chloride and bromide SEs still show limited electrochemical stability that is inadequate for ultrahigh voltage operations. Herein, this challenge is addressed by designing a dual‐halogen Li‐ion conductor: Li3InCl4.8F1.2. F is demonstrated to selectively occupy a specific lattice site in a solid superionic conductor (Li3InCl6) to form a new dual‐halogen solid electrolyte (DHSE). With the incorporation of F, the Li3InCl4.8F1.2 DHSE becomes dense and maintains a room‐temperature ionic conductivity over 10−4 S cm−1. Moreover, the Li3InCl4.8F1.2 DHSE exhibits a practical anodic limit over 6 V (vs Li/Li+), which can enable high‐voltage ASSLIBs with decent cycling. Spectroscopic, computational, and electrochemical characterizations are combined to identify a rich F‐containing passivating cathode‐electrolyte interface (CEI) generated in situ, thus expanding the electrochemical window of Li3InCl4.8F1.2 DHSE and preventing the detrimental interfacial reactions at the cathode. This work provides a new design strategy for the fast Li‐ion conductors with high oxidation stability and shows great potential to high‐voltage ASSLIBs.
Cathodes in lithium‐ion batteries with anionic redox can deliver extraordinarily high specific capacities but also present many issues such as oxygen release, voltage hysteresis, and sluggish kinetics. Identifying problems and developing solutions for these materials are vital for creating high‐energy lithium‐ion batteries. Herein, the electrochemical and structural monitoring is conducted on lithium‐rich cathodes to directly probe the formation processes of larger voltage hysteresis. These results indicate that the charge‐compensation properties, structural evolution, and transition metal (TM) ions migration vary from oxidation to reduction process. This leads to huge differences in charge and discharge voltage profile. Meanwhile, the anionic redox processes display a slow kinetics process with large hysteresis (≈0.5 V), compared to fast cationic redox processes without any hysteresis. More importantly, a simple yet effective strategy has been proposed where fine‐modulating local oxygen environment by the lithium/oxygen (Li/O) ratio tunes the anionic redox chemistry. This effectively improves its electrochemical properties, including the operating voltage and kinetics. This is also verified by theoretical calculations that adjusting anionic redox chemistry by the Li/O ratio shifts the TM 3d—O 2p bands and the non‐bonding O 2p band to a lower energy level, resulting in a higher redox reaction potential.
The controllable morphology and size Li-rich Mn-based layered oxide LiNiCoMnO with micro/nano structure is successfully prepared through a simple coprecipitation route followed by subsequent annealing treatment process. By rationally regulating and controlling the volume ratio of ethylene glycol (EG) in hydroalcoholic solution, the morphology and size of the final products can be reasonably designed and tailored from rod-like to olive-like, and further evolved into shuttle-like with the assistance of surfactant. Further, the structures and electrochemical properties of the Li-rich layered oxide with various morphology and size are systematically investigated. The galvanostatic testing demonstrates that the electrochemical performances of lithium ion batteries (LIBs) are highly dependent on the morphology and size of LiNiCoMnO cathode materials. In particular, the olive-like morphology cathode material with suitable size exhibits much better electrochemical performances compared with the other two cathode materials in terms of initial reversible capacity (297.0 mAh g) and cycle performance (95.4% capacity retention after 100 cycles at 0.5 C), as well as rate capacity (142.8 mAh g at 10 C). The excellent electrochemical performances of the as-prepared materials could be related to the synergistic effect of well-regulated morphology and appropriate size as well as their micro/nano structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.