Common wild rice contains valuable resources of novel alleles for rice improvement. It is well known that genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) ais a powerful tool for fine mapping of quantitative traits, new gene discovery and marker-assisted breeding. In this study, 132 CSSLs were developed from a cultivated rice (Oryza sativa) cultivar (93-11) and common wild rice (Oryza rufipogon Griff. DP30) by selfing-crossing, backcrossing and marker-assisted selection (MAS). Based on the high-throughput sequencing of the 93-11 and DP30, 285 pairs of Insertion-deletions (InDel) markers were selected with an average distance of 1.23 Mb. The length of this DP30-CSSLs library was 536.4 cM. The coverage rate of substitution lines cumulatively overlapping the whole genome of DP30 was about 91.55%. DP30-CSSLs were used to analyze the variation for 17 traits leading to the detection of 36 quantitative trait loci (QTLs) with significant phenotypic effects. A cold-tolerant line (RZ) was selected to construct a secondary mapping F2 population, which revealed that qCT2.1 is in the 1.7 Mb region of chromosome 2. These CSSLs may, therefore, provide powerful tools for genome wide large-scale gene discovery in wild rice. This research will also facilitate fine mapping and cloning of QTLs and genome-wide study of wild rice. Moreover, these CSSLs will provide a foundation for rice variety improvement.
Brown planthopper [BPH, Nilaparvata lugens (Stål)] is considered one of the most important pests of rice (Oryza sativa L.), which poses a serious threat to rice production. Identifying resistant Oryza germplasm can provide reliable accessions for breeding BPH resistant rice cultivars. In this study, the stem evaluation method (SEM) was first applied to identify the BPH resistance of 1,221 accessions of common wild rice (O. rufipogon Griff.) collected from three different regions of Guangxi Province, China. From this screening, 58 BPH resistant accessions were screened a second time, with 33 accessions ultimately identified as stable, highly resistant germplasm as confirmed by a third identification at the adult-plant stage. The distribution of the 58 BPH-resistant common wild rice accessions varies significantly from region to region. Genotypic analyses based on 42 simple sequence repeat (SSR) markers revealed that these 58 BPH-resistant accessions were genetically diverse, reflecting the rich genetic diversity reported in Guangxi common wild rice. Furthermore, results verified that the SEM is efficient for rapid and accurate screening of BPH-resistant germplasm, especially when a limited number of seeds are available or elite breeding lines need to be screened immediately. Also, SEM is the best method for evaluating BPH resistance at the adult stage because fewer insects are needed, and it is possible to repeat the evaluation in the same crop season. The 33 resistant rice accessions are a potential source of novel BPH resistance genes for developing cultivars with improved BPH resistance.
Wild rice is a primary source of genes that can be utilized to generate rice cultivars with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of consecutive and overlapping donor chromosome segments in a recipient’s genetic background. CSSLs are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar (O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS) of parental lines, 12565 mapped InDels were identified and designed for polymorphic molecular markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15. The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width (GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a purple leave margin CSSL line were selected to construct two secondary genetic populations for the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.