The software code SKYEAD.pack for retrieval of aerosol size distribution and optical thickness from data of direct and diffuse solar radiation is described; measurements are carried out with sky radiometers in the wavelength range 0.369-1.048 µm. The treatment of the radiative transfer problem concerning the optical quantities is mainly based on the IMS (improved multiple and single scattering) method, which uses the delta-M approximation for the truncation of the aerosol phase function and corrects the solution for the first- and second-order scattering. Both linear and nonlinear inversion methods can be used for retrieving the size distribution. Improved calibration methods for both direct and diffuse radiation, the data-analysis procedure, the results from the proposed code, and several connected problems are discussed. The results can be summarized as follows: (a) the SKYRAD.pack code can retrieve the columnar aerosol features with accuracy and efficiency in several environmental situations, provided the input parameters are correctly given; (b) when data of both direct and diffuse solar radiation are used, the detectable radius interval for aerosol particles is approximately from 0.03 to 10 µm; (c) besides the retrieval of the aerosol features, the data-analysis procedure also permits the determination of average values for three input parameters (real and imaginary aerosol refractive index, ground albedo) from the optical data; (d) absolute calibrations for the sky radiometer are not needed, and calibrations for direct and diffuse radiation can be carried out with field data; (e) the nonlinear inversion gives satisfactory results in a larger radius interval, without the unrealistic humps that occur with the linear inversion, but the results strongly depend on the first-guess spectrum; (f) aerosol features retrieved from simulated data showed a better agreement with the given data for the linear inversion than for the nonlinear inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.