At present, the existing methods have many limitations in small target detection, such as low accuracy, a high rate of false detection, and missed detection. This paper proposes the KPE-YOLOv5 algorithm aiming to improve the ability of small target detection. The algorithm has three improvements based on the YOLOv5 algorithm. Firstly, it achieves more accurate size of anchor-boxes for small targets by K-means++ clustering technology. Secondly, the scSE (spatial and channel compression and excitation) attention module is integrated into the new algorithm to encourage the backbone network to pay greater attention to the feature information of small targets. Finally, the capability of small target feature extraction is improved by increasing the small target detection layer, which also increases the detection accuracy of small targets. We evaluate KPE-YOLOv5 on the VisDrone-2020 dataset and compare performance with YOLOv5. The results show that KPE-YOLOv5 improves the detection mAP by 5.3% and increases the P by 7%. The KPE-YOLOv5 algorithm has better detection outcome than YOLOv5 for small target detection.
Unmanned aerial vehicles (UAVs) are a highly sought-after technology with numerous applications in both military and non-military uses. The identification of targets is a crucial aspect of UAV applications, but there are challenges associated with complex detection models and difficulty in detecting small targets. To address these issues, this study proposes the lightweight L-YOLO algorithm for target detection tasks from a UAV perspective. The L-YOLO algorithm improves on YOLOv5 by improving the model’s detection performance for small targets while reducing the number of parameters and computational effort. The GhostNet module replaces the relevant convolution in the YOLOv5 model to create a lightweight model. The EIoU loss is used as the loss function of the algorithm to accelerate convergence and improve regression accuracy. Furthermore, feature-level extensions based on YOLOv5 are implemented, and a new detection head is proposed to improve the model’s detection accuracy for small targets. The size of the anchor boxes is redesigned to suit the small targets using the K-means++ clustering algorithm. The experiments were conducted on the VisDrone-2022 dataset, and the L-YOLO algorithm demonstrated a reduction in computational effort by 42.42% and number of parameters by 48.6% compared to the original algorithm. Furthermore, recall and mAP@0.5 improved by 2.1% and 1.4%, respectively. These results demonstrate that the L-YOLO algorithm not only has better detection performance for small targets but is also a lighter model, indicating promising prospects for target detection from a UAV perspective.
In this paper, we presented our implementation of a counter mode AES processor based on the Xilinx Virtex2 FPGA platform. We have studied different techniques to implement the AES rijndael algorithm in reconfigurable hardware and choose the proper method to further optimize the structure of the cipher. This result in a clock frequency of 212.5MHz and translate to throughput of 27.1Gb/s, the highest throughput that have ever reported. We also, in this paper, compared the operation modes of AES, their security and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.