Significance Sphingosine-1-phosphate (S1P) receptors are valid therapeutic targets to treat autoimmune diseases, such as relapsing multiple sclerosis and ulcerative colitis. Particularly, S1PR1 is well characterized because of its nonredundant functions on T and B cells’ egress. However, the activation mechanism of S1PR1 is still poorly understood. Therefore, we determined active S1PR1–G i complex structures bound to distinct agonists. Phosphorylated Fingolimod [(S)-FTY720-P] could modulate lymphocyte trafficking and treat multiple sclerosis. The nonlipid-like agonist CBP-307 is currently being evaluated in a global phase 2 clinical study in moderate to severe ulcerative colitis and Crohn’s disease. Meanwhile, two binding poses of CBP-307 and the unoccupied subpocket we observed may provide opportunities to improve further the efficacy and specificity of CBP-307 targeting different S1P receptors.
Microglia are primary immune cells within the brain and are rapidly activated after cerebral ischemia. The degree of microglial activation is closely associated with the severity of ischemia. However, it remains largely unclear how microglial activation is differentially regulated in response to a different degree of ischemia. In this study, we used a bilateral common carotid artery ligation (BCAL) model and induced different degrees of ischemia by varying the duration of ligation to investigate the microglial response in CX3CR1GFP/+ mice. Confocal microscopy, immunofluorescence staining, RNA sequencing, and qRT-PCR were used to evaluate the de-ramification, proliferation, and differential gene expression associated with microglial activation. Our results showed that 30 min of ischemia induced rapid de-ramification of microglia but did not have significant influence on the microglial density. In contrast, 60 min of ischemia led to a significant decrease in microglial density and more pronounced de-ramification of microglial processes. Importantly, 30 min of ischemia did not induce proliferation of microglia, but 60 min of ischemia led to a marked increase in the density of proliferative microglia. Further analysis utilized transcriptome sequencing showed that microglial activation is differentially regulated in response to different degrees of ischemia. A total of 1,097 genes were differentially regulated after 60 min of ischemia, but only 68 genes were differentially regulated after 30 min of ischemia. Pathway enrichment analysis showed that apoptosis, cell mitosis, immune receptor activity and inflammatory-related pathways were highly regulated after 60 min of ischemia compared to 30 min of ischemia. Multiple microglia-related genes such as Cxcl10, Tlr7, Cd86, Tnfrsf1a, Nfkbia, Tgfb1, Ccl2 and Il-6, were upregulated with prolonged ischemia. Pharmacological inhibition of CSF1 receptor demonstrated that CSF1R signaling pathway contributed to microglial proliferation. Together, these results suggest that the proliferation of microglia is gated by the duration of ischemia and microglia were differentially activated in responding to different degrees of ischemia.
As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1-5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or non-lipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its non-redundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here we reported four atomic resolution cryo-EM structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod ((S)-FTY720-P), or non-lipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step "shallow to deep" transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1P receptors.
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes. ATG2A and ATG9A play an essential role in autophagy by mediating lipid transfer and re-equilibration between membranes for autophagosome formation. Here we report the cryo-EM structures of human ATG2A-WIPI4 complex at 3.2 A, and ATG2A-WIPI4-ATG9A complex at 7 A resolution. The ATG2A structure is characterized by a central hydrophobic cavity formed by a network of beta-strands that facilitates lipid transfer, and highly flexible N- and C-terminal domains. Molecular dynamics simulations of the ATG2A N-terminal domain revealed the mechanism of lipid-extraction from the donor membranes while the ATG2A-ATG9A complex structure provides insights into the later stages of the lipid transfer reaction. ATG9A-ATG2A structural analysis revealed a 1:1 stoichiometry, directly aligning the ATG9A lateral pore with ATG2A lipid transfer cavity, hence allowing for a direct transfer of lipids from ATG2A. The ATG9A trimer can interact with both N- and C-terminal tip of rod-shaped ATG2A. Cryo-electron tomography of ATG2A-liposome binding states shows that ATG2A tethers lipid vesicles at different orientations. In summary, this study provides a molecular basis for the growth of the phagophore membrane, and lends structural insights into spatially coupled lipid transport and re-equilibration during autophagosome formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.