The explosive growth of network traffic and its multitype on Internet have brought new and severe challenges to DDoS attack detection. To get the higher True Negative Rate (TNR), accuracy, and precision and to guarantee the robustness, stability, and universality of detection system, in this paper, we propose a DDoS attack detection method based on hybrid heterogeneous multiclassifier ensemble learning and design a heuristic detection algorithm based on Singular Value Decomposition (SVD) to construct our detection system. Experimental results show that our detection method is excellent in TNR, accuracy, and precision. Therefore, our algorithm has good detective performance for DDoS attack. Through the comparisons with Random Forest, k-Nearest Neighbor (k-NN), and Bagging comprising the component classifiers when the three algorithms are used alone by SVD and by un-SVD, it is shown that our model is superior to the state-of-the-art attack detection techniques in system generalization ability, detection stability, and overall detection performance.
Li4Ti5O12/rutile TiO2 (LTO-RT) composites with Li/Ti molar ratios of 3:5, 4:5 and 4.5:5 have been successfully synthesized with TiO2 microspheres as a precursor. Furthermore, C-coated LTO-RT mesoporous microspheres with a molar ratio of 4:5 (C/4-5-LTO-RT) have been prepared based on the LTO-RT composite through a hydrothermal method and high temperature calcination. After various characterizations, it is found that carbon plays a pivotal role in retaining the porous nanostructure of the original as-prepared TiO2 precursor in the overall process. Substantially, C/4-5-LTO-RT still shows a high specific surface area of 63.70 m(2) g(-1) even after high temperature treatment at 800 °C. Since the porous nanostructure offers open and direct channels for the diffusion of Li ions and electrons and carbon decoration also efficiently improves the electrical conductivity, the sample of C/4-5-LTO-RT shows an enhanced electrochemical performance. In addition, the presence of nanosized rutile TiO2 in C/4-5-LTO-RT has an important contribution to the high electrochemical performance, as does the fast lithium ion diffusion along the [001] direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.