Halide perovskite single crystal (HPSC) films have demonstrated extraordinary performance in solar cells, photodetectors, and lighting applications, owing to the high carrier mobility, long carrier diffusion length, tunable bandgap, and large light absorption coefficients of these materials. Here, the recent development of the major HPSC thin films is reviewed systematically, including MAPbI3, α‐FAPbI3, MAPbBr3, CsPbBr3, with special emphasis on different classes of fabrication methods and thin‐film characteristics. Finally, the conclusion and prospects in this field are discussed in detail. It is anticipated that the HPSC thin films will lead to a compelling future for the rising electronic applications.
Magnetoelectric (ME) sensors are an important tool to detect weak magnetic fields in the industry; however, to date, there are no high-quality ME sensors available for high-temperature environments such as engines, deep underground, and outer space. Here, a 0.364BiScO3–0.636PbTiO3 piezoelectric ceramic and Terfenol-D alloy with a Curie temperature of 450 and 380 °C, respectively, were bonded together by an inorganic glue to achieve a high-temperature ME sensor. The ceramic shows a piezoelectric d33 coefficient of 780 pC/N at 420 °C, and the inorganic glue has a high maximum stress of 9.12 MPa even at 300 °C. As a result, the sensor exhibits the maximum ME coefficient αE of 2.008, ∼1.455, and ∼0.906 V cm−1 Oe−1 at 20, 200, and 350 °C, respectively. Most importantly, the magnetic field detecting precision is as small as 42 nT at 20–350 °C. The ME sensor provides an effective solution for the detection of weak magnetic fields in harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.