Text Classification problem has been thoroughly studied in information retrieval problems and data mining tasks. It is beneficial in multiple tasks including medical diagnose health and care department, targeted marketing, entertainment industry, and group filtering processes. A recent innovation in both data mining and natural language processing gained the attention of researchers from all over the world to develop automated systems for text classification. NLP allows categorizing documents containing different texts. A huge amount of data is generated on social media sites through social media users. Three datasets have been used for experimental purposes including the COVID-19 fake news dataset, COVID-19 English tweet dataset, and extremist-non-extremist dataset which contain news blogs, posts, and tweets related to coronavirus and hate speech. Transfer learning approaches do not experiment on COVID-19 fake news and extremist-non-extremist datasets. Therefore, the proposed work applied transfer learning classification models on both these datasets to check the performance of transfer learning models. Models are trained and evaluated on the accuracy, precision, recall, and F1-score. Heat maps are also generated for every model. In the end, future directions are proposed.
A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analysis or opinion mining. Efficiently capturing, gathering, and analyzing sentiments have been challenging for researchers. To deal with these challenges, in this research work, we propose a highly accurate approach for SA of fake news on COVID-19. The fake news dataset contains fake news on COVID-19; we started by data preprocessing (replace the missing value, noise removal, tokenization, and stemming). We applied a semantic model with term frequency and inverse document frequency weighting for data representation. In the measuring and evaluation step, we applied eight machine-learning algorithms such as Naive Bayesian, Adaboost, K -nearest neighbors, random forest, logistic regression, decision tree, neural networks, and support vector machine and four deep learning CNN, LSTM, RNN, and GRU. Afterward, based on the results, we boiled a highly efficient prediction model with python, and we trained and evaluated the classification model according to the performance measures (confusion matrix, classification rate, true positives rate...), then tested the model on a set of unclassified fake news on COVID-19, to predict the sentiment class of each fake news on COVID-19. Obtained results demonstrate a high accuracy compared to the other models. Finally, a set of recommendations is provided with future directions for this research to help researchers select an efficient sentiment analysis model on Twitter data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.