A series of eight bis(thiosemicarbazone) ligands and 16 of their respective copper(II) and zinc(II) complexes containing a combination of hydrogen, methyl, pyridyl, phenyl, and/or ethyl substituents at the diimine position of the ligand backbone were synthesized and characterized. The objective of this study was to identify the structure−activity relationships within a series of analogues with different substituents at the diimine position of the backbone and at the terminal N atom. The Cu(II) complexes Cu(GTSM 2 ), Cu(GTSCM), Cu-(PyTSM 2 ), Cu(EMTSM 2 ) and Cu(PGTSM 2 ) demonstrated a distorted square planar geometry, while the Zn(II) complexes Zn(ATSM 2 )(DMSO), Zn(PyTSM 2 )(DMSO), and Zn-(PGTSM 2 )(H 2 O) formed a distorted square pyramidal geometry. Cyclic voltammetry showed that the Cu(II) complexes display quasi-reversible electrochemistry. Of the agents, Cu(II) glyoxal bis(4,4-dimethyl-3-thiosemicarbazone) [Cu(GTSM 2 )] and Cu(II) diacetyl bis(4,4-dimethyl-3-thiosemicarbazone) [Cu(ATSM 2 )] demonstrated the greatest antiproliferative activity against tumor cells. Substitutions at the diimine position and at the terminal N atom with hydrophobic moieties markedly decreased their antiproliferative activity. Complexation of the bis(thiosemicarbazones) with Zn(II) generally decreased their antiproliferative activity, suggesting the Zn(II) complex did not act as a chaperone to deliver the ligand intracellularly, in contrast to similar bis(thiosemicarbazone) cobalt(III) complexes [King et al. Inorg. Chem. 2017, 56, 6609−6623]. However, five of the eight bis(thiosemicarbazone) Cu(II) complexes maintained or increased their antiproliferative activity, relative to the ligand alone, and a mechanism of Cu-induced oxidative stress is suggested. Surprisingly, relative to normoxic growth conditions, hypoxia that is found in the tumor microenvironment decreased the antiproliferative efficacy of most bis(thiosemicarbazones) and their copper complexes. This was independent of the potential hypoxia−selectivity mediated by Cu(II/I) redox potentials. These results provide structure−activity relationships useful for the rational design of bis(thiosemicarbazone) anticancer agents.
Over 44 million people live with Alzheimer's disease (AD) worldwide. Currently, only symptomatic treatments are available for AD and no cure exists. Considering the lack of effective treatments for AD due to its multi-factorial pathology, development of novel multi-target-directed drugs are desirable. Herein, we report the development of a novel series of thiosemicarbazones derived from 1-benzylpiperidine, a pharmacophore within the acetylcholinesterase inhibitor, Donepezil. These thiosemicarbazones were designed to target five major AD hallmarks, including: low acetylcholine levels, dysfunctional autophagy, metal dys-homeostasis, protein aggregation and oxidative stress. Of these thiosemicarbazones, pyridoxal 4-N-(1-benzylpiperidin-4-yl)thiosemicarbazone (PBPT) emerged as the lead compound. This agent demonstrated the most promising multi-functional activity by exhibiting very low anti-proliferative activity, substantial iron chelation efficacy, inhibition of copper-mediated amyloid-β aggregation, inhibition of oxidative stress, moderate acetylcholinesterase inhibitory activity and autophagic induction. These diverse properties highlight the potential of the lead ligand, PBPT, as a promising multi-functional agent for AD treatment.
Coumarin sulfonamide is a heterocyclic pharmacophore and an important structural motif which is a core and integral part of different therapeutic scaffolds and analogues. Coumarin sulfonamides are privileged and pivotal templates which have a broad spectrum of applications in the fields of medicine, pharmacology and pharmaceutics. Coumarin sulfonamide exhibited versatile and myriad biomedical activities such as anti-bacterial, antiviral, antifungal, anti-inflammatory and anti-cancer. This review article focuses on the structural features of coumarin sulfonamide derivatives in the treatment of different lethal diseases on the basis of structure-activity relationships (SAR). The plethora of research cited in this review article summarizes and discusses the various substitutions around the coumarin sulfonamide nucleus which have provided a wide spectrum of biological activities and therapeutic potential that has proved attractive to many researchers looking to exploit the coumarin sulfonamide skeleton for drug discovery and the development of novel therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.