We reformulate a stochastic epidemic model consisting of four human classes. We show that there exists a unique positive solution to the proposed model. The stochastic basic reproduction number
is established. A stationary distribution (SD) under several conditions is obtained by incorporating stochastic Lyapunov function. The extinction for the proposed disease model is obtained by using the local martingale theorem. The first order stochastic Runge-Kutta method is taken into account to depict the numerical simulations.
In this work, we consider an epidemic model for corona-virus (COVID-19) with random perturbations as well as time delay, composed of four different classes of susceptible population, the exposed population, the infectious population and the quarantine population. We investigate the proposed problem for the derivation of at least one and unique solution in the positive feasible region of non-local solution. For one stationary ergodic distribution, the necessary result of existence is developed by applying the Lyapunov function in the sense of delay-stochastic approach and the condition for the extinction of the disease is also established. Our obtained results show that the effect of Brownian motion and noise terms on the transmission of the epidemic is very high. If the noise is large the infection may decrease or vanish. For validation of our obtained scheme, the results for all the classes of the problem have been numerically simulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.