This study investigates the effect of metals (cadmium, lead, mercury, and tellurium) and organic pollutants (benzene, diesel, lindane, and xylene) on a dinoflagellate-Prorocentrum sigmoides Böhm-and its associated culturable bacteria. Two bacterial cultures (Bacillus subtilis strain PD005 and B. xiamensis strain PD006) were isolated from P. sigmoides and characterized by scanning electron microscopy, 16S ribosomal RNA sequencing, biochemical analyses, and growth curve studies. This study points to a mutualistic relationship between P. sigmoides and its associated Bacillus isolates. P. sigmoides enhanced the growth of its associated Bacillus spp., through the secretion of extracellular exudates. In return, both Bacillus isolates contributed to the resistance of P. sigmoides to metals and organic pollutants. P. sigmoides and both Bacillus isolates exhibited concentration-dependent responses to metals and organic pollutants. An intriguing feature was the similar response of P. sigmoides and its associated Bacillus isolates to mercury and cadmium, indicating a co-selection of mercury and cadmium resistance. This provides support to the "dinoflagellate hostphycosphere bacteria" behaving as a single functional unit. However, the sensitivity profiles of P. sigmoides and its associated Bacillus isolates are different with respect to metals versus organic pollutants. These aspects need to be addressed in future studies to unravel the effect of metal and organic pollutants on dinoflagellates, an important component of the phytoplankton community, and to discern the influence of associated "phycosphere" bacteria on the response of dinoflagellates to pollutants. K E Y W O R D Sassociated bacteria, Bacillus spp., co-selection, metals, organic pollutants, Prorocentrum sigmoides
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.