Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically pump fluids with very precise control across membranes containing conical pores via the application of a symmetric sinusoidal voltage. The combination of pressure and asymmetric EOF can also provide a means to generate new nanopore electrical behaviors, including negative differential resistance (NDR), in which the current through a conical pore decreases with increasing driving force (applied voltage), similar to solid-state tunnel diodes. NDR results from a positive feedback mechanism between the ion distributions and EOF, yielding a true bistability in both fluid flow and electrical current at a critical applied voltage. Nanopore-based NDR is extremely sensitive to the surface charge near the nanopore opening, suggesting possible applications in chemical sensing.
The identification and discrimination of four epigenetic modifications to cytosine in the proposed active demethylation cycle is demonstrated at the single-molecule level, without the need for chemical pre-treatment or labeling. The wild-type protein nanopore α-hemolysin is used to capture individual DNA duplexes containing a single cytosine-cytosine mismatch. The mismatch is held at the latch constriction of α-hemolysin, which is used to monitor the kinetics of base flipping at the mismatch site. Base flipping and the subsequent interactions between the DNA and the protein are dramatically altered when one of the cytosine bases is replaced with methyl-, hydroxymethyl-, formyl-, or carboxylcytosine. As well as providing a route to single-molecule analysis of important epigenetic markers in DNA, our results provide important insights into how the introduction of biologically-relevant, but poorly understood, modifications to cytosine effect the local conformational dynamics of a DNA duplex in a confined environment.
Unzipping of double-stranded nucleic acids by an electric field applied across a wild-type α-hemolysin (αHL) nanopore provides structural information about different duplex forms. In this work, comparative studies on A-form DNA-RNA duplexes and B-form DNA-DNA duplexes with a single-stranded tail identified significant differences in the blockage current and the unzipping duration between the two helical forms. We observed that the B-form duplex blocks the channel 1.9 ± 0.2 pA more and unzips ∼15-fold more slowly than an A-form duplex at 120 mV. We developed a model to describe the dependence of duplex unzipping on structure. We demonstrate that the wider A-form duplex (d = 2.4 nm) is unable to enter the vestibule opening of αHL on the cis side, leading to unzipping outside of the nanopore with higher residual current and faster unzipping times. In contrast, the smaller B-form duplexes (d = 2.0 nm) enter the vestibule of αHL, resulting in decreased current blockages and slower unzipping. We investigated the effects of varying the length of the single-stranded overhang, and studied A-form DNA-PNA duplexes to provide additional support for the proposed model. This study identifies key differences between A- and B-form duplex unzipping that will be important in the design of future probe-based methods for detecting DNA or RNA.
Measured apparent activation energies, E A , of ion transport (K + and Cl -) in conical glass nanopores are reported as a function of applied voltage (-0.5 to 0.5 V), pore size (20 -2000 nm) and electrolyte concentration (0.1 -50 mM). E A values for transport within an electrically charged conical glass nanopore differ from the bulk values due to the voltage and temperature-dependent distribution of the ions within the double layer. Remarkably, nanopores that display ion current rectification also display a large increase in E A under accumulation mode conditions (at applied negative voltages versus an external ground) and a large decrease in E A under depletion mode conditions (at positive voltages). Finite element simulations based on the Poisson-Nernst-Planck model semi-quantitatively predict the measured temperature-dependent conductivity and dependence of E A on applied voltage. The results highlight the relationships between the distribution of ions with the nanopore, ionic current, and E A , and their dependencies on pore size, temperature, ion concentration, and applied voltage.
Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.