Metabolic syndrome (MetS) has become a global public health problem affecting all nations and races. Few studies on the epidemic of metabolic syndrome (MetS) examined multi-ethnic adults in rural areas in Xinjiang, China. We thus investigated the prevalence and risk factors of MetS there. A cross-sectional study was performed in a representative sample of 15020 rural multi-ethnic adults from 2009 to 2010. Four widely used criteria (ATPIII\IDF\JIS\CDS) were used to measure the prevalence of MetS. Multiple logistic regression analysis was used to explore the risk factors of MetS. The age-adjusted prevalence of MetS was 14.43%, 21.33%, 26.50%, and 19.89% based on the ATP III, IDF, JIS and CDS criterion, respectively. The prevalence of MetS was higher in women and increased with age. According to JIS criterion, the prevalence of components in MetS was 57.75% for abdominal obesity, 44.05% for elevated blood pressure, 40.98% for reduced HDL-cholesterol, 23.33% for elevated triglycerides, 18.95% for raised fasting plasma glucose. Lower consumption of vegetables, milk, and higher consumption of red meat were associated with higher likelihood of having MetS. The prevalence of MetS in Xinjiang rural multi-ethnic adults was high. Diet factors were associated with the prevalence of MetS.
BackgroundCopper dioxide nanoparticles (NPs), which is a kind of important and widely used metal oxide NP, eventually reaches a water body through wastewater and urban runoff. Ecotoxicological studies of this kind of NPs effects on hydrophyte are very limited at present. Lemna minor was exposed to media with different concentrations of CuO NPs, bulk CuO, and two times concentration of Cu2+ released from CuO NPs in culture media. The changes in plant growth, chlorophyll content, antioxidant defense enzyme activities [i.e., peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) activities], and malondialdehyde (MDA) content were measured in the present study. The particle size of CuO NPs and the zeta potential of CuO NPs and bulk CuO in the culture media were also analyzed to complementally evaluate their toxicity on duckweed.ResultResults showed that CuO NPs inhibited the plant growth at lower concentration than bulk CuO. L. minor roots were easily broken in CuO NPs media under the experimental condition, and the inhibition occurred only partly because CuO NPs released Cu2+ in the culture media. The POD, SOD, and CAT activities of L. minor increased when the plants were exposed to CuO NPs, bulk CuO NPs and two times the concentration of Cu2+ released from CuO NPs in culture media, but the increase of these enzymes were the highest in CuO NPs media among the three kinds of materials. The MDA content was significantly increased compared with that of the control from 50 mg L−1 CuO NP concentration in culture media.ConclusionCuO NPs has more toxicity on L. minor compared with that of bulk CuO, and the inhibition occurred only partly because released Cu2+ in the culture media. The plant accumulated more reactive oxygen species in the CuO NP media than in the same concentration of bulk CuO. The plant cell encountered serious damage when the CuO NP concentration reached 50 mg L−1 in culture media. The toxicology of CuO NP on hydrophytes must be considered because that hydrophytes are the basic of aquatic ecosystem.
Objective: This study aimed to estimate the prevalence of diabetes mellitus (DM) and impaired fasting glucose (IFG) in a Kazakh population aged ≥18 years living in the YiLi District of Xinjiang, China and to evaluate the associated risk factors of diabetes. Methods: Randomly selected adults, living for at least 6 months in the YiLi District in Xinjiang had their clinical characteristics and standard blood chemistries measured. DM and IFG were defined according to WHO 1999 criteria. The adjusted odds ratio (ORs) and 95% confidence intervals were calculated for the association of diabetes risk factors in multivariate logistic regression models. Results: A total of 3919 subjects were randomly selected. The age-and gender-standardized prevalence of DM and IFG were 5.9% and 10.0%, respectively. The prevalence of DM and IFG increased with age and BMI. Prevalence of 7.4%, 12.2% in males and 4.9%, 8.6% in females for DM and IFG. Compared by sex, prevalence of DM and IFG was higher in males. Prevalence of 3.4%, 8.1% in normal, 6.7%, 11.9% in overweight and 12.0%, 13.0% in obesity for diabetes and IFG. In the multivariable logistic models, male sex, older age, unmarried, overweight, obesity, hypertension, triglycerides and smoking were all significantly associated with an increased risk of diabetes. Conclusions: The prevalence of DM and IFG among minorities was lower than the overall national level both in men and women (9.7% in total, 10.6% in males, 8.8% in females), and also lower than among the Han ethnicity (9.26%) which predominates in China today.
Arsenic produces liver disease through the oxidative stress. While lutein can alleviate cytotoxic and oxidative injury, nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a critical role in defending oxidative species. However, the mechanisms by which lutein protects the liver against the effect of arsenic are not known. Therefore, this study aims to investigate the mechanisms involved in the action of lutein using mice model in which hepatotoxicity was induced by arsenic. We found that mice treatment with lutein could reverse changes in morphological and liver indexes and result in a significant improvement in hepatic function comparing with arsenic trioxide group. Lutein treatment improved the activities of antioxidant enzymes and attenuated increasing of ROS and MDA induced by arsenic trioxide. Lutein could increase the mRNA and protein expression of Nrf2 signaling related genes (Nrf2, Nqo1, Ho-1, and Gst). These findings provide additional evidence that lutein may be useful for reducing reproductive injury associated with oxidative stress by the activation of Nrf2 signaling. Our findings suggest a possible mechanism of antioxidant lutein in preventing the hepatotoxicity, which implicate that a dietary lutein may be a potential treatment for liver diseases, especially for arsenicosis therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.