Glucocorticoids play an important biphasic role in modulating neural plasticity; low doses enhance neural plasticity and spatial memory behavior, whereas chronic, higher doses produce inhibition. We found that 3 independent measures of mitochondrial functionmitochondrial oxidation, membrane potential, and mitochondrial calcium holding capacity-were regulated by long-term corticosterone (CORT) treatment in an inverted ''U''-shape. This regulation of mitochondrial function by CORT correlated with neuroprotection; that is, treatment with low doses of CORT had a neuroprotective effect, whereas treatment with high doses of CORT enhanced kainic acid (KA)-induced toxicity of cortical neurons. We then undertook experiments to elucidate the mechanisms underlying these biphasic effects and found that glucocorticoid receptors (GRs) formed a complex with the anti-apoptotic protein Bcl-2 in response to CORT treatment and translocated with Bcl-2 into mitochondria after acute treatment with low or high doses of CORT in primary cortical neurons. However, after 3 days of treatment, high, but not low, doses of CORT resulted in decreased GR and Bcl-2 levels in mitochondria. As with the in vitro studies, Bcl-2 levels in the mitochondria of the prefrontal cortex were significantly decreased, along with GR levels, after long-term treatment with high-dose CORT in vivo. These findings have the potential to contribute to a more complete understanding of the mechanisms by which glucocorticoids and chronic stress regulate cellular plasticity and resilience and to inform the future development of improved therapeutics.allostasis ͉ Bcl-2 ͉ mitochondria ͉ mood disorders ͉ glucocorticoid receptor
MicroRNAs (miRNAs) regulate messenger RNA (mRNA) translation in a sequence-specific manner and are emerging as critical regulators of central nervous system plasticity. We found hippocampal miRNA level changes following chronic treatment with mood stabilizers (lithium and valproate (VPA)). Several of these miRNAs were then confirmed by quantitative PCR: let-7b, let-7c, miR-128a, miR-24a, miR-30c, miR-34a, miR-221, and miR-144. The predicted effectors of these miRNAs are involved in neurite outgrowth, neurogenesis, and signaling of PTEN, ERK, and Wnt/b-catenin pathways. Interestingly, several of these effector-coding genes are also genetic risk candidates for bipolar disorder. We provide evidence that treatment with mood stabilizers increases these potential susceptibility genes in vivo: dipeptidyl-peptidase 10, metabotropic glutamate receptor 7 (GRM7), and thyroid hormone receptor, b. Treatment of primary cultures with lithium-or VPA-lowered levels of miR-34a and elevated levels of GRM7, a predicted effector of miR34a. Conversely, miR-34a precursor treatment lowered GRM7 levels and treatment with a miR-34a inhibitor enhanced GRM7 levels. These data confirm that endogenous miR-34a regulates GRM7 levels and supports the notion that miR-34a contributes to the effects of lithium and VPA on GRM7. These findings are the first to demonstrate that miRNAs and their predicted effectors are targets for the action of psychotherapeutic drugs.
BackgroundAutism spectrum disorders (ASD) are neurodevelopmental disorders characterized by abnormalities in reciprocal social interactions and language development and/or usage, and by restricted interests and repetitive behaviors. Differential gene expression of neurologically relevant genes in lymphoblastoid cell lines from monozygotic twins discordant in diagnosis or severity of autism suggested that epigenetic factors such as DNA methylation or microRNAs (miRNAs) may be involved in ASD.MethodsGlobal miRNA expression profiling using lymphoblasts derived from these autistic twins and unaffected sibling controls was therefore performed using high-throughput miRNA microarray analysis. Selected differentially expressed miRNAs were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis, and the putative target genes of two of the confirmed miRNA were validated by knockdown and overexpression of the respective miRNAs.ResultsDifferentially expressed miRNAs were found to target genes highly involved in neurological functions and disorders in addition to genes involved in gastrointestinal diseases, circadian rhythm signaling, as well as steroid hormone metabolism and receptor signaling. Novel network analyses of the putative target genes that were inversely expressed relative to the relevant miRNA in these same samples further revealed an association with ASD and other co-morbid disorders, including muscle and gastrointestinal diseases, as well as with biological functions implicated in ASD, such as memory and synaptic plasticity. Putative gene targets (ID3 and PLK2) of two RT-PCR-confirmed brain-specific miRNAs (hsa-miR-29b and hsa-miR-219-5p) were validated by miRNA overexpression or knockdown assays, respectively. Comparisons of these mRNA and miRNA expression levels between discordant twins and between case-control sib pairs show an inverse relationship, further suggesting that ID3 and PLK2 are in vivo targets of the respective miRNA. Interestingly, the up-regulation of miR-23a and down-regulation of miR-106b in this study reflected miRNA changes previously reported in post-mortem autistic cerebellum by Abu-Elneel et al. in 2008. This finding validates these differentially expressed miRNAs in neurological tissue from a different cohort as well as supports the use of the lymphoblasts as a surrogate to study miRNA expression in ASD.ConclusionsFindings from this study strongly suggest that dysregulation of miRNA expression contributes to the observed alterations in gene expression and, in turn, may lead to the pathophysiological conditions underlying autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.