pH-responsive drug delivery systems are yielding opportunities to directly deliver antibiotics to the site of infection. Therefore, this study aimed to develop and evaluate novel pH-responsive lipid−dendrimer hybrid nanoparticles (LDH-NPs) for the delivery of vancomycin (VCM) to the site of infection, by intracellular bacterial pathogens. The LDH-NPs were formulated using the emulsification solvent evaporation method and were characterized by various in vitro and molecular dynamic (MD) simulation techniques. LDH-NPs were 124.4 ± 2.01 nm in size, with a zeta-potential of −7.15 ± 2.98 mV and drug entrapment efficiency of 82.70 ± 4.09%, which exhibited pH-responsive behavior by shifting the surface charge from negative at physiological pH to positive in acidic pHs, with a size increase from 124.4 ± 2.01 to 173.9 ± 13.38 nm, and 252.7 ± 3.98 nm at pHs of 7.4, 6.0, and 4.5, respectively. Results indicated that the in vitro drug release of VCM from LDH-NPs occurred faster at pH 6.0 than at pH 7.4. The antibacterial activity of LDH-NPs against methicillin-resistance Staphylococcus aureus (MRSA) showed 8-fold lower MICs at pH 6.0 and 7.4, compared to treatment with VCM only. A bacterial cell viability study showed LDH-NPs had an 84.19% killing of MRSA, compared to VCM (49.26%) at the same MIC, further confirming its efficacy. Cell uptake studies showed that LDH-NPs intracellularly accumulated in HEK 293 cells, confirming significant clearance (p < 0.0001) of intracellular bacteria. MD simulation showed that interaction between the dendrimer and oleylamine was predominantly governed by van der Waals (VdW) interactions; whereas the interaction between the dendrimer and VCM was governed by both VdW and electrostatic interactions. Therefore, this study concludes that the pH-responsive release of VCM enhanced antibacterial efficacy against MRSA and intracellular delivery of an antibiotic. Thus, LDH-NPs is a promising nanocarrier system for antibiotics with the potential to improve the treatment outcomes of bacterial infections in patients with antibiotic resistant strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.