The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control.
The current study investigated the re-planning of the grasping movements, its functional interactions with working memory (WM), and underlying neurophysiological activity. Mainly, the current study investigated the movement re-planning interference with WM domains (verbal, visuospatial) and processes (maintenance, retrieval). We combined a cognitive-motor dual-task paradigm with an EEG setting. Thirty-six participants completed the verbal and visuospatial versions of a WM task concurrently with a manual task which required performing a grasp-and-place movement by keeping the initial movement plan (prepared movement condition) or changing it for reversing the movement direction (re-planned movement condition). ERPs were extracted for the prepared and re-planned conditions in the verbal and visuospatial tasks separately during the maintenance and retrieval processes. ERP analyses showed that during the maintenance process of both the verbal and visuospatial tasks, the re-planned movements compared to the prepared movements generated a larger positive slow wave with a centroparietal maximum between 200 and 700. We interpreted this ERP effect as a P300 component for the re-planned movements. There was no ERP difference between the planned and re-planned movements during the retrieval process. Accordingly, we suggest that re-planning the grasp-and-place movement interfered at least with the maintenance of the verbal and visuospatial domains, resulting in the re-planning costs. More generally, the current study provides the initial neurophysiological investigations of the movement re-planning–WM interactions during grasping movements, and contributes to a better understanding of the neurocognitive mechanisms underlying manual action flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.