Emery-Dreifuss muscular dystrophy is an inherited muscular disorder clinically characterized by slowly progressive weakness affecting humero-peroneal muscles, early joint contractures, and cardiomyopathy with conduction block. The X-linked recessive form is caused by mutation in the EMD gene encoding an integral protein of the inner nuclear membrane, emerin. In this study, mutant mice lacking emerin were produced by insertion of a neomycin resistance gene into exon 6 of the coding gene. Tissues taken from mutant mice lacked emerin. The mutant mice displayed a normal growth rate indistinguishable from their littermates and were fertile. No marked muscle weakness or joint abnormalities were observed; however, rotarod test revealed altered motor coordination. Electrocardiography showed mild prolongation of atrioventricular conduction time in emerin-lacking male mice older than 40 weeks of age. Electron microscopic analysis of skeletal and cardiac muscles from emerin-lacking mice revealed small vacuoles, which mostly bordered the myonuclei. Our results suggest that emerin deficiency causes minimal motor and cardiac dysfunctions in mice with a structural fragility of myonuclei.
Nuclear organization of chromosomes proceeds with significant changes during meiosis. In the fission yeast Schizosaccharomyces pombe, centromeres are clustered at the spindle-pole body (SPB) during the mitotic cell cycle; however, during meiotic prophase telomeres become clustered to the SPB and centromeres dissociate from the SPB. We followed the movement of telomeres, centromeres and sister chromatids in living S. pombe cells that were induced to meiosis by inactivation of Pat1 kinase (a key negative regulator of meiosis). Time-course observation in living cells determined the temporal order of DNA synthesis, telomere clustering, centromere separation and meiotic chromosome segregation. When meiosis was induced by Pat1 inactivation at the G1 phase of mitosis, telomeres clustered to the SPB as per normal meiosis, but in most cells the centromeres remained partially associated with the SPB. When meiosis was initiated at the G2 phase by Pat1 inactivation, both telomeres and centromeres retained their mitotic nuclear positions in the majority of cells. These results indicate that the progression of meiosis induced by Pat1 inactivation is aberrant from normal meiosis in some events. As Pat1 inactivation is often useful to induce S. pombe cells synchronously into meiosis, the temporal order of chromosomal events determined here will provide landmarks for the progression of meiosis downstream the Pat1 inactivation.
In Schizosaccharomyces pombe, rad24 and rad25 have been identified to be homologous to mammalian 14-3-3 genes and found to be involved in many cellular events, including checkpoint and meiosis. In the present study, we present evidences that Rad24 and Rad25 act as negative regulators of Byr2 (mitogen-activated protein kinase [MAPK] kinase kinase). Overexpression of rad24 or rad25 reduced mating and sporulation in homothallic wild-type cells. In contrast, the mating and sporulation efficiency of rad24-or rad25-null cells was higher than that of wild-type cells. Deletion of rad24 or rad25 increased sporulation efficiency in ras1-null diploid cells but not in byr2-, ste4-, byr1-, and spk1-null cells. Rad24 and Rad25 had no effect on the activity of constitutively active Byr1 S214DT218D . Rad24 and Rad25 bound to both the N-terminal and the C-terminal domains of Byr2 when these bacterially expressed proteins were examined. The formation of complexes in vivo between Byr2 and either Rad24 or Rad25 was also confirmed by immunocoprecipitation. Furthermore, we showed negative regulation of Byr2 by Rad25, by monitoring the mRNA level of mam2, which is regulated by both the Ras1/MAPK pathway and ste11, in various combinations of mutants. In addition, the cellular localization of Byr2 in living cells was observed by using fusion to green fluorescent protein. Byr2 was mainly localized in the cytoplasm during vegetative growth and then concentrated at the plasma membrane in response to nitrogen starvation. Deletion of rad24 or rad25 fastened the timing of Byr2 translocation. Our results are consistent with the hypothesis that one of the roles of 14-3-3 is to keep Byr2 in the cytoplasm and to affect the timing of Byr2 translocation in response to sexual developmental signal.
A major question in neocortical research is the extent to which neuronal organization is stereotyped. Previous studies have revealed functional clustering and neuronal interactions among cortical neurons located within tens of micrometers in the tangential orientation (orientation parallel to the pial surface). In the tangential orientation at this scale, however, it is unknown whether the distribution of neuronal subtypes is random or has any stereotypy. We found that the tangential arrangement of subcerebral projection neurons, which are a major pyramidal neuron subtype in mouse layer V, was not random but significantly periodic. This periodicity, which was observed in multiple cortical areas, had a typical wavelength of 30 m. Under specific visual stimulation, neurons in single repeating units exhibited strongly correlated c-Fos expression. Therefore, subcerebral projection neurons have a periodic arrangement, and neuronal activity leading to c-Fos expression is similar among neurons in the same repeating units. These results suggest that the neocortex has a periodic functional micro-organization composed of a major neuronal subtype in layer V.
Thioviridamide, prethioviridamide, and JBIR-140, which are ribosomally synthesized and post-translationally modified peptides (RiPPs) possessing five thioamide bonds, induce selective apoptosis in various cancer cells, especially those expressing the adenovirus oncogene E1A. However, the target protein of this unique family of bioactive compounds was previously unknown. To investigate the mechanism of action, we adopted a combined approach of genome-wide shRNA library screening, transcriptome profiling, and biochemical identification of prethioviridamide-binding proteins. An shRNA screen identified 63 genes involved in cell sensitivity to prethioviridamide, which included translation initiation factors, aminoacyl tRNA synthetases, and mitochondrial proteins. Transcriptome profiling and subsequent analysis revealed that prethioviridamide induces the integrated stress response (ISR) through the GCN2-ATF4 pathway, which is likely to cause cell death. Furthermore, we found that prethioviridamide binds and inhibits respiratory chain complex V (F1Fo-ATP synthase) in mitochondria, suggesting that inhibition of complex V leads to activation of the GCN2-ATF4 pathway. These results imply that the members of a unique family of RiPPs with polythioamide structure target mitochondria to induce the ISR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.