Chitin synthase 2 of Saccharomyces cerevisiae was characterized by means of site-directed mutagenesis and subsequent expression of the mutant enzymes in yeast cells. Chitin synthase 2 shares a region whose sequence is highly conserved in all chitin synthases. Substitutions of conserved amino acids in this region with alanine (alanine scanning) identified two domains in which any conserved amino acid could not be replaced by alanine to retain enzyme activity. These two domains contained unique sequences, Glu561-Asp562-Arg563 and Gln601-Arg602-Arg603-Arg604-Trp605, that were conserved in all types of chitin synthases. Glu561 or arginine at 563, 602, and 603 could be substituted by glutamic acid and lysine, respectively, without significant loss of enzyme activity. However, even conservative substitutions of Asp562 with glutamic acid, Gln601 with asparagine, Arg604 with lysine, or Trp605 with tyrosine drastically decreased the activity, but did not affect apparent Km values for the substrate significantly. In addition to these amino acids, Asp441 was also found in all chitin synthase. The mutant harboring a glutamic acid substitution for Asp441 severely lost activity, but it showed a similar apparent Km value for the substrate. Amounts of the mutant enzymes in total membranes were more or less the same as found in the wild type. Furthermore, Asp441, Asp562, Gln601, Arg604, and Trp605 are completely conserved in other proteins possessing N-acetylglucosaminyltransferase activity such as NodC proteins of Rhizobium bacterias. These results suggest that Asp441, Asp562, Gln601, Arg604, and Trp605 are located in the active pocket and that they function as the catalytic residues of the enzyme.
Human mesenchymal stem cells (hMSCs) are able to both self-replicate and differentiate into a variety of cell types. Fibroblast growth factor-2 (FGF-2) stimulates the growth of hMSCs in vitro, but its mechanisms have not been clarified yet. In this study, we investigated whether cellular senescence was involved in the stimulation of hMSCs growth by FGF-2 and the expression levels of transforming growth factor-beta1 and -beta2 (TGF-betas). Because hMSCs were induced cellular senescence due to long-term culture, FGF-2 decreased the percentage of senescent cells and suppressed G1 cell growth arrest through the suppression of p21(Cip1), p53, and p16(INK4a) mRNA expression levels. Furthermore, the levels of TGF-betas mRNA expression in hMSCs were increased by long-term culture, but FGF-2 suppressed the increase of TGF-beta2 mRNA expression due to long-term culture. These results suggest that FGF-2 suppresses the hMSCs cellular senescence dependent on the length of culture through down-regulation of TGF-beta2 expression.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days' culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days' culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-b (TGF-b) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-b signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.
The purpose of tumorigenicity testing, as applied not only to cell substrates used for viral vaccine manufacture but also stem cells used for cell-based therapy, is to discriminate between cells that have the capacity to form tumors and cells that do not. Therefore, tumorigenicity testing is essential in assessing the safety of these biological materials. Recently developed NOD/Shi-scid IL2Rg(null) (NOG) mice have been shown to be superior to NOD/Shi-scid (SCID) mice for xenotransplantation of both normal and cancerous cells. To select a suitable mouse strain as a xenogenic host for tumorigenicity testing, we compared the susceptibility of NOG (T, B, and NK cell-defective), SCID (T and B cell-defective), and the traditionally used nude (T cell-defective) mice to tumor formation from xenotransplanted HeLa S3 cells. When 10(4) HeLa S3 cells were subcutaneously inoculated into the flanks of these mice, the tumor incidence on day 22 was 10/10 (100%) in NOG, 2/10 (20%) in SCID, and 0/10 (0%) in nude mice. The subcutaneous tumors formed reproducibly and semiquantitatively in a dose-dependent manner. Unexpectedly, half of the NOG mice (5/10) that had been inoculated with a mere 10(1) HeLa S3 cells formed progressively growing subcutaneous tumors on day 78. We confirmed that the engrafted tumors originated from inoculated HeLa S3 cells by immunohistochemical staining with anti-HLA antibodies. These data suggest that NOG mice may be the best choice as a suitable strain for testing tumorigenicity.
Precise quantification of cellular potential of stem cells, such as human bone marrow–derived mesenchymal stem cells (hBMSCs), is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1) the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2) predictions of potentials are generated before differentiation cultures are initiated; (3) prediction of multiple potentials can be provided simultaneously for each sample; and (4) predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic) and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21) and cytoskeleton-related genes (PTK2, CD146, and CD49) already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature conversion method for objective potential prediction, but should also allow clinicians to choose the most practical morphology-based prediction method for their own purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.