Taken together, these results support a robust role for brief ES following peripheral nerve injuries in promoting regeneration. Electrical stimulation has a wider repertoire of impact than previously recognized, and its impact in vitro supports the hypothesis that a neuron-specific reprogrammed injury response is recruited by the ES protocol.
The ability to achieve fast fluid flow yet maintain a relatively low temperature rise is important for AC electrothermal (ACET) micropumping, especially in applications such as bioMEMS and lab-on-a-chip systems. In this paper, we propose a two-phase ACET fluidic micropump using a coplanar asymmetric electrode array. The proposed structure applies a two-phase AC voltage, i.e., voltage of phase 0°/180°, to the narrow electrodes while the wide electrodes are at ground potential. Numerical simulation demonstrates that this simple coplanar electrode configuration can achieve at least 25% faster fluid flow rates than using a single AC signal. By selecting certain design parameters, a two-phase ACET structure can achieve up to 50% faster fluid flow rates than a corresponding single-phase structure. The simple two-phase AC signal sources are easily produced by using inverter buffers, which is a considerable improvement compared to the multi-phase AC signals required by other electrokinetic micropumping methods, such as traveling wave structures.
In this paper, we report on a modeling study of an AC electrothermal (ACET) micropump with high operating pressures as well as fast flow rates. One specific application area is for fluid delivery using microneedle arrays which require higher pressures and faster flow rates than have been previously reported with ACET devices. ACET is very suitable for accurate actuation and control of fluid flow, since the technique has been shown to be very effective in high conductivity fluids and has the ability to create a pulsation free flow. However, AC electrokinetic pumps usually can only generate low operating pressures of 1 to 100 Pa, where flow reversal is likely to occur with an external load. In order to realize a high performance ACET micropump for continuous fluid delivery, applying relatively high AC operating voltages (20 to 36 Vrms) to silicon substrate ACET actuators and using long serpentine channel allows the boosting of operating pressure as well as increasing the flow rates. Fast pumping flow rates (102–103 nl/s) and high operating pressures (1–12 kPa) can be achieved by applying both methods, making them of significant importance for continuous fluid delivery applications using microneedle arrays and other such biomedical devices.
In this paper, we apply mixture theory to quantitatively predict the transient behavior of drug delivery by using a microneedle array inserted into tissue. In the framework of mixture theory, biological tissue is treated as a multi-phase fluid saturated porous medium, where the mathematical behavior of the tissue is characterized by the conservation equations of multi-phase models. Drug delivery by microneedle array imposes additional requirements on the simulation procedures, including drug absorption by the blood capillaries and tissue cells, as well as a moving interface along its flowing pathway. The contribution of this paper is to combine mixture theory with the moving mesh methods in modeling the transient behavior of drug delivery into tissue. Numerical simulations are provided to obtain drug concentration distributions into tissues and capillaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.