The present study describes a stabilization of single quantum dot (QD) micelles by hydrophobic silica precursors and an extension of the silica layer to form a silica shell around the micelle. The obtained product consists of up to 92% of single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS quantum dots) in the silica micelles, coated with silica shell. The thickness of silica shell could vary, starting from 3 to 4 nm. Increasing the shell thickness increases the photoluminescent characteristics of QDs in aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a high quantum yield in aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The presence of a hydrophobic layer between the QD and silica shell ensures an incorporation of other hydrophobic molecules (with interesting properties) in the close proximity of nanocrystal. Thus, it is possible to combine the characteristics of hybrid material with the priority of small size. The nanoparticles are amino functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery.
The NK-lysin derived peptide NK-2 is a potent antibacterial, but non-toxic to a human keratinocyte cell line and of low hemolytic activity. Its target selectivity is based upon a strong binding preference to membranes containing anionic phospholipids, which are normally not found on the surface of human cells. Here, we analyzed the interaction of NK-2 with normal human lymphocytes and seven different human cancer cell lines and demonstrate that some of these cells expose negatively charged surface phosphatidylserine (PS), which presumably facilitates killing of the cells by NK-2. This is underlined by the specific intercalation of the peptide into PS-containing liposomes analyzed by fluorescence-resonance energy transfer spectroscopy.
The present study examined the potential of quantum dot bioconjugates to sensitize cells to UV irradiation and to promote the photodynamic
activity of the classical photosensitizers such as trifluoperazine (TFPZ) and sulfonated aluminum phthalocyanine (SALPC). Water-soluble
CdSe nanocrystals were conjugated with anti-CD antibody with known specificity to leukemia cells. Quantum dot anti-CD conjugates were
incubated with the leukemia cell line Jurkat to ensure specific interaction with the cell surface. This interaction was confirmed by fluorescent
confocal microscopy. Furthermore, quantum dot anti-CD90-labeled leukemia cells were mixed with normal lymphocytes and subjected to UV
irradiation in the presence or absence of a classical photosensitizer (TFPZ or SALPC). The cell fractions were separated by lectin-affinity
column chromatography. The cell type was confirmed with fluorescent confocal microscopy and flow cytometry using appropriate antibodies;
quantum dot anti-CD90 for leukemia cells, and PE-CD44 for normal lymphocytes. The viability of the separated cell fractions was determined
using flow cytometry and the methyl tetrazolium test. The results demonstrated that quantum dot anti-CD conjugates sensitized leukemia cells
to UV irradiation and promoted the effect of the classical photosensitizer SALPC. The results are discussed in the context of free radical
generation during combined application of quantum dot bioconjugates and UV irradiation, as well as in the context of UV-mediated liberation
of free Cd ions and their harmful effect on cell viability.
In the present study, we describe the design and fabrication of quantum dot-conjugated hybridization probes and their application to the development of a comparatively simple and rapid procedure for the selection of highly effective small-interfering RNA (siRNA) sequences for RNA interference (RNAi) in mammalian cells, for example, siRNAs with high accessibility and affinity to the respective mRNA target. A single-stranded siRNA was conjugated with a quantum dot and used as a hybridization probe. The target mRNA was amplified in the presence of Cy5-labeled nucleotides, and Cy5-mRNA served as a hybridization sample. The formation of siRNA/mRNA duplexes during a comparatively short hybridization time (1 h) was used as a criterion for the selection of highly effective, target-specific siRNA sequences. The accessibility and affinity of the siRNA sequence for the target mRNA site were determined by fluorescence resonance energy transfer (FRET) between a quantum dot (donor) and a fluorescent dye molecule (Cy5, acceptor) localized at an appropriate distance from each other when hybridization occurred. The FRET signal was observed only when there was high accessibility between an antisense siRNA and a sense mRNA and did not appear in the case of mismatch siRNAs. Moreover, the amplitude of the FRET signal significantly correlated with the specific effect of siRNA on the expression of the target mRNA and protein, determined in native cells by RT-PCR and immunoblot analysis, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.