Streptococcus pyogenes thiol proteinase, also known as streptococcal pyrogenic exotoxin B (SpeB), has been suggested to be a major virulence factor in S. pyogenes infection. SpeB was reported to induce apoptosis of host cells, but its mechanism of action is not yet fully understood. In this study, we examined the involvement of matrix metalloproteinases (MMPs) in SpeB-induced apoptosis. We first developed a large-scale preparation of recombinant SpeB and precursors of human MMP-9 and -2 (proMMPs) by using Escherichia coli Rosetta (DE3)pLysS and baculovirus-insect cell expression systems, respectively. Treatment with SpeB induced effective proteolytic activation of both proMMP-9 and -2. When RAW264 murine macrophages were incubated with SpeB-activated proMMP-9, the level of tumor necrosis factor alpha (TNF-␣) in conditioned medium (CM), assessed by an enzyme immunoassay, was elevated. This increase was completely inhibited by addition of the MMP inhibitor SI-27 to the cell culture. The CM also produced marked induction of apoptosis of U937 human monocytic cells. Similarly, soluble Fas ligand (sFasL) was detected in CM of cultures of SW480 cells expressing FasL after treatment with SpeB-activated proMMPs; this CM also induced apoptosis in U937 cells. SpeB had a direct effect as well and caused the release of TNF-␣ and sFasL from the cells. SpeB-dependent production of MMP-9 and -2 and proapoptotic molecules (TNF-␣ and sFasL) was evident in a murine model of severe invasive S. pyogenes infection. These results suggest that SpeB or SpeB-activated MMPs contribute to tissue damage and streptococcal invasion in the host via extracellular release of TNF-␣ and sFasL.
We report the successful expression and detection of a phosphorylated form of human T cell tyrosine kinase, Lck, in Saccharomyes cerevisiae, which leads to growth suppression of the yeast cells. Expression of an inactive Lck mutant resulted in no phosphorylation and no growth suppression, indicating that cell growth inhibition by Lck is due to the activity of the kinase, consistent with the observed tyrosine-phosphorylation of the Lck and yeast host cell proteins. The addition of a known inhibitor of Lck to the cell culture resulted in recovery of cell growth expressing the active Lck, suggesting that the growth inhibition by lck gene expression can be used to screen inhibitors for the gene product. We have extended such approach to Tob, another potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.