Amorpha fruticosa L. (Fabaceae) is a shrub native to North America which has been cultivated mainly for its ornamental features, honey plant value and protective properties against soil erosion. It is registered amongst the most noxious invasive species in Europe. However, a growing body of scientific literature also points to the therapeutic potential of its chemical constituents. Due to the fact that A. fruticosa is an aggressive invasive species, it can provide an abundant and cheap resource of plant chemical constituents which can be utilized for therapeutic purposes. Additionally, exploitation of the biomass for medicinal use might contribute to relieving the destructive impact of this species on natural habitats. The aim of this review is to provide a comprehensive summary and systematize the state-of-the-art in the knowledge of the phytochemical composition and the potential of A. fruticosa in disease treatment and prevention, with especial emphasis on diabetes and metabolic syndrome. Also reviewed are aspects related to potential toxicity of A. fruticosa which has not yet been systematically evaluated in human subjects.
The hepatoprotective potential of saponarin, isolated from Gypsophila trichotoma, was evaluated in vitro/in vivo using a hepatotoxicity model of paracetamol-induced liver injury. In freshly isolated rat hepatocytes, paracetamol (100 μmol) led to a significant decrease in cell viability, increased LDH leakage, decreased levels of cellular GSH, and elevated MDA quantity. Saponarin (60–0.006 μg/mL) preincubation, however, significantly ameliorated paracetamol-induced hepatotoxicity in a concentration-dependent manner.
The beneficial effect of saponarin was also observed in vivo. Rats were challenged with paracetamol alone (600 mg/kg, i.p.) and after 7-day pretreatment with saponarin (80 mg/kg, oral gavage). Paracetamol toxicity was evidenced by increase in MDA quantity and decrease in cell GSH levels and antioxidant defence system. No changes in phase I enzyme activities of AH and EMND and cytochrome P 450 quantity were detected. Saponarin pretreatment resulted in significant increase in cell antioxidant defence system and GSH levels and decrease in lipid peroxidation. The biochemical changes are in good correlation with the histopathological data. Protective activity of saponarin was similar to the activity of positive control silymarin. On the basis of these results, it can be concluded that saponarin exerts antioxidant and hepatoprotective activity against paracetamol liver injury in vitro/in vivo.
The aim of this study is to develop a sensitive HPLC method for the quantitative determination of cytisine in serum and to characterize the pharmacokinetic behaviour of cytisine after oral and intravenous administration in rabbits. The pharmacokinetic behaviour of cytisine is studied in male and female New Zealand rabbits after oral and intravenous administration. Cytisine is administered orally (dose of 5 mg/kg b.w.) under fasting condition (12 hours) and intravenously (dose 1 mg/kg b.w.) in the marginal ear vein. Cytisine serum concentrations are measured using a highly selective and sensitive validated HPLC method with UV detection. Linearity of the method is in the range 12–2 400 µg/L; accuracy and precision are both within ± 10%, and the limit of detection is 4 µg/L. Selectivity and stability are also validated. Basic pharmacokinetic parameters of cytisine after single oral and intravenous administration are calculated using TOPFIT software. Pharmacokinetic analysis suggests a rapid but incomplete absorption of cytisine after oral administration.
Oxidative stress is critically involved in a variety of diseases. Reactive oxygen species (ROS) are highly toxic molecules that are generated during the body's metabolic reactions and can react with and damage some cellular molecules such as lipids, proteins, or DNA. Liver is an important target of the oxidative stress because of its exposure to various prooxidant toxic compounds as well as of its metabolic function and ability to transform some xenobiotics to reactive toxic metabolites (as ROS). To investigate the processes of liver injuries and especially liver oxidative damages there are many experimental models, some of which we discuss further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.