Acrylonitrile (AN)-acrylamide (AM) copolymers were prepared by nitric acidic hydrolysis of homopolyacrylonitrile. The acrylamino group increased as a function of hydrolysis time, while crystallinity decreased. Differential scanning calorimetry and a thermal gravimetric analysis indicated that the acylamino introduced by acidic hydrolysis effectively enhanced the cyclization reaction at low temperature due to the change of the cyclization reaction mechanism. Char-yield of AN-AM copolymers also gradually increased with increasing hydrolysis time. The maximum char-yield was 49.48% when hydrolized at 23°C in 65% nitric acid solution for 18 h, which was 30% higher than that of non-acidic hydrolysis of homopolyacrylonitrile. Simulation of the practical process also showed an increase of char yields, where the char yields were 55.43% and 62.60% for homopolyacrylonitrile and copolyacrylonitrile, respectively, with a hydrolysis time of 13 h.
Polyacrylonitrile (PAN) copolymers of different molecular weights were synthesized by a suspension polymerization and precipitation polymerization method. The rheology behaviors of the synthesized PAN copolymers were investigated in relation to their molecular weight, solid content and melting temperature. The influence of "historical effects" on the spinning solution of PAN was studied by analyzing the laws of viscosity considering the diversification time and temperature. The viscosity disciplines of each spinning solution conformed well to the rheological universal laws in a comparison of the suspension polymerization product with that of precipitation polymerization. Viscosity changes in the swelling process of dissolution were gentler in the suspension polymerization product; a small amount of water will quickly debase the solution viscosity, and high-speed mixing can greatly shorten the time required by the spinning solution to reach the final viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.