Aluminum matrix composites (AMCs) reinforced with the nano‐sized particles are very important materials for the applications in industrial fields. These aluminum matrix composites consist of an aluminum matrix and nano‐sized particles, which own very different physical and mechanical properties from those of the matrix. Nano‐sized particles show a more obvious strengthening effect on the matrix than the micro‐sized particles do, because of the high specific surface area which is positive for the pinning effect during the deformation process. Thus, the nano‐sized particle‐reinforced AMCs usually exhibit a good ductility. The main issues of the fabrication methods are the low wettability between the nano‐sized particles and the molten aluminum alloys, which is fatal to the conventional casting methods, and the agglomeration of nano‐sized particles which happened easier than the larger particles. Several alternative processes have been presented in literature for the production of the nano‐sized particle‐reinforced aluminum composites. This paper is aimed at reviewing the feasible manufacturing techniques used for the fabrication of nano‐sized particle‐reinforced aluminum composites. More importantly, the strengthening mechanisms and models which are responsible for the improvement of mechanical properties of the nano‐sized particle‐reinforced aluminum composites have been reviewed.
In the present work, the tensile properties at 77 K of the 0.3 wt% nano‐sized TiCp/Al–Cu composite is investigated to explore its potential application at cryogenic temperature. The TiCp/Al–Cu composite exhibits superior ultimate tensile strength (620 MPa), yield strength (531 MPa), and fracture strain (7.2%) at 77 K. The addition of TiCp leads to the refinement of θ′ precipitates and enhanced dislocation strengthening effect, contributing to the improved tensile strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.