The T-cell surface molecule TIGIT is an immune checkpoint molecule that inhibits T-cell responses, but its roles in cancer are little understood. In this study, we evaluated the role TIGIT checkpoint plays in the development and progression of gastric cancer. We show that the percentage of CD8 T cells that are TIGIT þ was increased in gastric cancer patients compared with healthy individuals. These cells showed functional exhaustion with impaired activation, proliferation, cytokine production, and metabolism, all of which were rescued by glucose. In addition, gastric cancer tissue and cell lines expressed CD155, which bound TIGIT receptors and inactivated CD8 T cells. In a T cell-gastric cancer cell coculture system, gastric cancer cells deprived CD8 T cells of glucose and impaired CD8 T-cell effector functions; these effects were neutralized by the additional glucose or by TIGIT blockade. In gastric cancer tumor cells, CD155 silencing increased T-cell metabolism and IFNg production, whereas CD155 overexpression inhibited T-cell metabolism and IFNg production; this inhibition was neutralized by TIGIT blockade. Targeting CD155/TIGIT enhanced CD8 T-cell reaction and improved survival in tumor-bearing mice. Combined targeting of TIGIT and PD-1 further enhanced CD8 T-cell activation and improved survival in tumor-bearing mice.Our results suggest that gastric cancer cells inhibit CD8 T-cell metabolism through CD155/TIGIT signaling, which inhibits CD8 T-cell effector functions, resulting in hyporesponsive antitumor immunity. These findings support the candidacy of CD155/TIGIT as a potential therapeutic target in gastric cancer.
Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
BackgroundSepsis is an important cause of neonatal morbidity and mortality; therefore, the early diagnosis of neonatal sepsis is essential.MethodOur aim was to compare the diagnostic accuracy of procalcitonin (PCT), C-reactive protein (CRP), procalcitonin combined with C-reactive protein (PCT + CRP) and presepsin in the diagnosis of neonatal sepsis. We searched seven databases to identify studies that met the inclusion criteria. Two independent reviewers performed data extraction. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), area under curve (AUC), and corresponding 95% credible interval (95% CI) were calculated by true positive (TP), false positive (FP), false negative (FN), and true negative (TN) classification using a bivariate regression model in STATA 14.0 software. The pooled sensitivity, specificity, PLR, NLR, DOR, AUC, and corresponding 95% CI were the primary outcomes. Secondary outcomes included the sensitivity and specificity in multiple subgroup analyses.ResultsA total of 28 studies enrolling 2661 patients were included in our meta-analysis. The pooled sensitivity of CRP (0.71 (0.63, 0.78)) was weaker than that of PCT (0.85 (0.79, 0.89)), PCT + CRP (0.91 (0.84, 0.95)) and presepsin (0.94 (0.80, 0.99)) and the pooled NLR of presepsin (0.06 (0.02, 0.23)) and PCT + CRP (0.10 (0.05, 0.19)) were less than CRP (0.33 (0.26, 0.42)), and the AUC for presepsin (0.99 (0.98, 1.00)) was greater than PCT + CRP (0.96 (0.93, 0.97)), CRP (0.85 (0.82, 0.88)) and PCT (0.91 (0.89, 0.94)). The results of the subgroup analysis showed that 0.5–2 ng/mL may be the appropriate cutoff interval for PCT. A cut-off value > 10 mg/L for CRP had high sensitivity and specificity.ConclusionsThe combination of PCT and CRP or presepsin alone improves the accuracy of diagnosis of neonatal sepsis. However, further studies are required to confirm these findings.Electronic supplementary materialThe online version of this article (10.1186/s13054-018-2236-1) contains supplementary material, which is available to authorized users.
The success of checkpoint inhibitors in cancer treatment is associated with the infiltration of tissue-resident memory T (Trm) cells. In this study, we found that about 30% of tumorinfiltrating lymphocytes (TIL) in the tumor microenvironment of gastric adenocarcinoma were CD69 þ CD103 þ Trm cells. Trm cells were low in patients with metastasis, and the presence of Trm cells was associated with better prognosis in patients with gastric adenocarcinoma. Trm cells expressed high PD-1, TIGIT, and CD39 and represented tumor-reactive TILs. Instead of utilizing glucose, Trm cells relied on fatty acid oxidation for cell survival. Deprivation of fatty acid resulted in Trm cell death. In a tumor cell-T-cell coculture system, gastric adenocarcinoma cells outcompeted Trm cells for lipid uptake and induced Trm cell death. Targeting PD-L1 decreased fatty acid binding protein (Fabp) 4 and Fabp5 expression in tumor cells of gastric adenocarcinoma. In contrast, the blockade of PD-L1 increased Fabp4/5 expression in Trm cells, promoting lipid uptake by Trm cells and resulting in better survival of Trm cells in vitro and in vivo. PD-L1 blockade unleashed Trm cells specifically in the patientderived xenograft (PDX) mice. PDX mice that did not respond to PD-L1 blockade had less Trm cells than responders. Together, these data demonstrated that Trm cells represent a subset of TILs in the antitumor immune response and that metabolic reprogramming could be a promising way to prolong the longevity of Trm cells and enhance antitumor immunity in gastric adenocarcinoma.
Surface properties, as well as inherent physicochemical properties, of the engineered nanomaterials play important roles in their interactions with the biological systems, which eventually affect their efficiency in diagnostic and therapeutic applications. Here we report a new class MRI contrast agent based on milk casein protein coated iron oxide nanoparticles (CNIOs) with a core size of 15 nm and hydrodynamic diameter ~30 nm. These CNIOs exhibited excellent water-solubility, colloidal stability, and biocompatibility. Importantly, CNIOs exhibited prominent T2 enhancing capability with a transverse relaxivity r2 of 273 mM−1s−1 at 3 Tesla. The transverse relaxivity is ~2.5-fold higher than that of iron oxide nanoparticles with the same core but an amphiphilic polymer coating. CNIOs showed pH-responsive properties, formed loose and soluble aggregates near the pI (pH~4.0). The aggregates could be dissociated reversibly when the solution pH was adjusted away from the pI. The transverse relaxation property and MRI contrast enhancing effect of CNIOs remained unchanged in the pH range of 2.0 to 8.0. Further functionalization of CNIOs can be achieved via surface modification of the protein coating. Bio-affinitive ligands, such as a single chain fragment from the antibody of epidermal growth factor receptor (ScFvEGFR), could be readily conjugated onto the protein coating, enabling specific targeting to MDA-MB-231 breast cancer cells over-expressing EGFR. T2-weighted MRI of mice intravenously administered with CNIOs demonstrated strong contrast enhancement in the liver and spleen. These favorable properties suggest CNIOs as a class of biomarker targeted magnetic nanoparticles for MRI contrast enhancement and related biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.