Aerosol-cloud interactions (aerosol indirect effects) play an important role in regional meteorological variations, which could further induce feedback on regional air quality. While the impact of aerosol-cloud interactions on meteorology and climate has been extensively studied, their feedback on air quality remains unclear. Using a fully coupled meteorology-chemistry model, we find that increased aerosol loading due to anthropogenic activities in China substantially increases column cloud droplet number concentration and liquid water path (LWP), which further leads to a reduction in the downward shortwave radiation at surface, surface air temperature and planetary boundary layer (PBL) height. The shallower PBL and accelerated cloud chemistry due to larger LWP in turn enhance the concentrations of particulate matter with diameter less than 2.5 μm (PM2.5) by up to 33.2 μg m−3 (25.1%) and 11.0 μg m−3 (12.5%) in January and July, respectively. Such a positive feedback amplifies the changes in PM2.5 concentrations, indicating an additional air quality benefit under effective pollution control policies but a penalty for a region with a deterioration in PM2.5 pollution. Additionally, we show that the cloud processing of aerosols, including wet scavenging and cloud chemistry, could also have substantial effects on PM2.5 concentrations.
During the past few years, air pollution in the Fenwei Plain (FWP) region had obviously rebounded. In this study, we used quantitative analysis, difference analysis, and correlation analysis methods to analyze the temporal and spatial distribution and the influence of the meteorological and climatic factors on haze pollution in FWP. The results showed that on the long-term timescale, the haze pollution had an overall upward trend during the winter of 1984-2017, and the pollution became more serious after 2000. In addition, the differences in meteorological parameters such as relative humidity, sea level pressure, temperature, vertical velocity, and wind fields near the surface between the regional haze days and the regional clean days were remarkable, indicating that the changes in these meteorological parameters had a distinct impact on haze pollution. Among several atmospheric circulations in the Northern Hemisphere mid-high latitudes, Eurasian (EU) pattern had the most obvious influence on haze pollution via two possible pathways: First, on the interannual timescale, the evolution of EU pattern affected the changes of Siberian high and Aleutian low pressure; second, changes in EU pattern could result in changes in wind speed at 850 hPa, boundary layer height and relative humidity in the lower troposphere. All these findings may provide some help for the government to take prevention measures for haze pollution in FWP.
Abstract. A record-breaking severe ozone (O3) pollution episode occurred in the Pearl River Delta (PRD) in early autumn 2019 when the PRD was under the influence of a Pacific subtropical high followed by Typhoon Mitag. In this study, we analyzed the effects of meteorological and photochemical processes on the O3 concentration in the PRD during this episode by carrying out the Weather Research Forecast–Community Multiscale Air Quality (WRF-CMAQ) model simulations. Results showed that low relative humidity, high boundary layer height, weak northerly surface wind, and strong downdrafts were the main meteorological factors contributing to O3 pollution. Moreover, delayed sea breezes that lasted into the night would transport O3 from the sea back to the land and resulted in secondary O3 maxima at night. In addition, O3 and its precursors stored in the residual layer above the surface layer at night can be mixed down to the surface in the next morning, further enhancing the daytime ground-level O3 concentration on the following day. Photochemical production of O3, with a daytime average production rate of about 7.2 ppb h−1 (parts per billion), is found to be the predominate positive contributor to the O3 budget of the boundary layer (0–1260 m) during the entire O3 episode, while the horizontal and vertical transport fluxes are the dominant negative contributors. This O3 episode accounted for 10 out of the yearly total of 51 d when the maximum daily 8 h average (MDA8) O3 concentration exceeded the national standard of 75 ppb in the PRD in 2019. Based on these results, we propose that the enhanced photochemical production of O3 during the episode is a major cause of the most severe O3 pollution year since the official O3 observation started in the PRD in 2006. Moreover, since this O3 episode is a synoptic-scale phenomenon covering the entire eastern China, we also suggest that the enhanced photochemical production of O3 in this O3 episode is a major cause of the extraordinarily high O3 concentrations observed in eastern China in 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.