Lysyl oxidase-like 2 (LOXL2), a copper-dependent enzyme of the lysyl oxidase family and its nonsecreted, catalytically dead spliced isoform L2Δ13, enhance cell migration and invasion, stimulate filopodia formation, modulate the expression of cytoskeletal genes, and promote tumor development and metastasis in vivo. We previously showed that LOXL2 reorganizes the actin cytoskeleton in esophageal squamous cell carcinoma (ESCC) cells, however, the underlying molecular mechanisms were not identified. Here, using interactome analysis, we identified ezrin (EZR), fascin (FSCN1), heat shock protein beta-1 (HSPB1), and tropomodulin-3 (TMOD3) as actin-binding proteins that associate with cytoplasmic LOXL2, as well as with its L2Δ13 variant. High levels of LOXL2 and L2Δ13 and their cytoskeletal partners correlated with poor clinical outcome in patients with ESCC. To better understand the significance of these interactions, we focused on the interaction of LOXL2 with ezrin. Phosphorylation of ezrin at T567 was greatly reduced following depletion of LOXL2 and was enhanced following LOXL2/L2Δ13 reexpression. Furthermore, LOXL2 depletion inhibited the ability of ezrin to promote tumor progression. These results suggest that LOXL2-induced ezrin phosphorylation, which also requires PKCα, is critical for LOXL2-induced cytoskeletal reorganization that subsequently promotes tumor cell invasion and metastasis in ESCC. In summary, we have characterized a novel molecular mechanism that mediates, in part, the protumorigenic activity of LOXL2. These findings may enable the future development of therapeutic agents targeting cytoplasmic LOXL2.
Significance:
LOXL2 and its spliced isoform L2Δ13 promote cytoskeletal reorganization and invasion of esophageal cancer cells by interacting with cytoplasmic actin-binding proteins such as ezrin.
<div>Abstract<p>Lysyl oxidase-like 2 (LOXL2), a copper-dependent enzyme of the lysyl oxidase family and its nonsecreted, catalytically dead spliced isoform L2Δ13, enhance cell migration and invasion, stimulate filopodia formation, modulate the expression of cytoskeletal genes, and promote tumor development and metastasis <i>in vivo</i>. We previously showed that LOXL2 reorganizes the actin cytoskeleton in esophageal squamous cell carcinoma (ESCC) cells, however, the underlying molecular mechanisms were not identified. Here, using interactome analysis, we identified ezrin (EZR), fascin (FSCN1), heat shock protein beta-1 (HSPB1), and tropomodulin-3 (TMOD3) as actin-binding proteins that associate with cytoplasmic LOXL2, as well as with its L2Δ13 variant. High levels of LOXL2 and L2Δ13 and their cytoskeletal partners correlated with poor clinical outcome in patients with ESCC. To better understand the significance of these interactions, we focused on the interaction of LOXL2 with ezrin. Phosphorylation of ezrin at T567 was greatly reduced following depletion of LOXL2 and was enhanced following LOXL2/L2Δ13 reexpression. Furthermore, LOXL2 depletion inhibited the ability of ezrin to promote tumor progression. These results suggest that LOXL2-induced ezrin phosphorylation, which also requires PKCα, is critical for LOXL2-induced cytoskeletal reorganization that subsequently promotes tumor cell invasion and metastasis in ESCC. In summary, we have characterized a novel molecular mechanism that mediates, in part, the protumorigenic activity of LOXL2. These findings may enable the future development of therapeutic agents targeting cytoplasmic LOXL2.</p>Significance:<p>LOXL2 and its spliced isoform L2Δ13 promote cytoskeletal reorganization and invasion of esophageal cancer cells by interacting with cytoplasmic actin-binding proteins such as ezrin.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.