In this paper, a parametric constitutive model based on Abel dashpot is established in a simple form and with clear physical meaning to deduce the expression of dynamic mechanical modulus of MREs. Meanwhile, in consideration for the pressure stress on MREs in the experiment of shear mechanical properties or the application to vibration damper, some improvements are made on the particle chain model based on the coupled field. In addition, in order to verify the accuracy of the overall model, five groups of MREs samples based on silicone rubber with different volume fractions are prepared and the MCR51 rheometer is used to conduct the experiment of dynamic mechanical properties based on frequency and magnetic field scanning. Finally, experimental results indicate that the established model fits well with laboratory data; namely, the relationship between the dynamic modulus of MREs and changes in frequency and magnetic field is well described by the model.
A novel magnetorheological material defined as magnetorheological Silly Putty (MRSP) is prepared by dispersing soft magnetic particles into Silly Putty matrix with shear stiffening property. Static mechanical properties including creep and stress relaxation and dynamic rheological properties of MRSPs are tested by rheometer. The experimental results indicate that the external magnetic field exerts significant influence on the creep and relaxation behaviors. Moreover, the storage modulus of MRSPs increases sharply in response to the external stimuli of increasing angular frequency automatically and can be enhanced by external magnetic field. Besides, temperature plays a key role in shear stiffening and magnetorheological effect of MRSPs. Furthermore, considering the obstruction to the particle chains formation induced by Silly Putty matrix, a nonperforative particle aggregated chains model is proposed. The model curve is in consistency with experimental data, which means it can describe magnetoinduced behavior of MRSPs well.
Magnetorheological elastomer (MRE) vibration isolation devices can improve a system’s vibration response via adjustable stiffness and damping under different magnetic fields. Combined with negative stiffness design, these MRE devices can reduce a system’s stiffness and improve the vibration control effect significantly. This paper develops a variable negative stiffness MRE isolation device by combining an improved separable iron core with laminated MREs. The relationship between the negative stiffness and the performance of the device is obtained by mathematical transformation. Its vibration response under simple harmonic excitation at small amplitude and the impact of the volume fraction of soft magnetic particles on the isolation system are also analyzed. The results show that the negative stiffness produced by the magnetic force is a major factor affecting the capacity of the isolation system. Compared to devices of the same size, the isolation system equipped with low-particle volume fraction MREs demonstrates better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.