Hydrogen-powered airplanes have recently attracted a revitalized push in the aviation sector to combat CO2 emissions. However, to also reduce, or even eliminate, non-CO2 emissions and contrails, the combination of hydrogen with all-electric solutions is undoubtedly the best option to move toward the ambitious goal of climate-neutral aviation. Another important design choice is to store hydrogen cryogenically in its liquid form (LH2) to reduce space occupation compared to storage as compressed gas. However, the LH2 fuels cannot be utilized directly in fuel cells. It needs to be brought from liquid to a gas at about 350 K, where large amounts of heat must be added. Thus, a synergy can be made from this otherwise wasted cryogenic refrigeration power where superconducting machines (SCMs) and cold power electronics (CPE) are low-hanging fruits that could lead to radical space and weight reductions onboard the aircraft. These opportunities can be realized without having to pay the price, nor the volume occupation and mass needed for the cooling ability usually needed to achieve these extraordinary performances. In fact, this ground-breaking synergy makes cryogenic energy conversion relevant in a whole new way for aviation. The SCMs’ more than five times higher power densities than their conventional counterparts are exceptionally significant. This article introduces the recently proposed cryo-electric drivetrain initiatives and explores the opportunities of using direct hydrogen cooling as a potential heating solution to enhance the overall performance and scalability of zero-emission propulsion systems in future regional aircraft.
Hydrogen-powered airplanes have recently attracted a revitalized push in the aviation sector to combat CO2 emissions. However, to also reduce, or even eliminate, non-CO2 emissions and contrails, the combination of hydrogen with all-electric solutions is undoubtedly the best option to move toward the ambitious goal of climate-neutral aviation. Another important design choice is to store hydrogen cryogenically in its liquid form (LH2) to reduce space occupation compared to storage as compressed gas. However, the LH2 fuels cannot be utilized directly in fuel cells. It needs to be brought from liquid to a gas at about 350 K, where large amounts of heat must be added. Thus, a synergy can be made from this otherwise wasted cryogenic refrigeration power where superconducting machines (SCMs) and cold power electronics (CPE) are low-hanging fruits that could lead to radical space and weight reductions onboard the aircraft. These opportunities can be realized without having to pay the price, nor the volume occupation and mass needed for the cooling ability usually needed to achieve these extraordinary performances. In fact, this ground-breaking synergy makes cryogenic energy conversion relevant in a whole new way for aviation. The SCMs’ more than five times higher power densities than their conventional counterparts are exceptionally significant. This article introduces the recently proposed cryo-electric drivetrain initiatives and explores the opportunities of using direct hydrogen cooling as a potential heating solution to enhance the overall performance and scalability of zero-emission propulsion systems in future regional aircraft.
<p>This article describes the design and analysis of a 2.5-MW, 5000-rpm electric motor with a slotted armature employing REBCO high-temperature superconductors (HTS). The alternating current and field in the armature induces AC losses in the superconductors, requiring cryogenic cooling. Therefore, the aim is to design a machine with sufficiently low losses to make this cooling realistic, which simultaneously outperforms the state-of-the-art. The reasoning behind the key design choices is presented before the model used for two-dimensional (2-D) finite element analysis (FEA) is described. Then, HTS AC losses are studied with the T-A-formulation, examining the impact of various operating conditions. Aligning the HTS tapes with the field was found to successfully reduce AC losses, while filamentization was only successful for more than 10 filaments. The final design had an estimated efficiency of 99.8%, an active torque density of 50.9 Nm/kg, and a cryogenic cooling power requirement of 0.05% of the output power. </p>
<p>This article describes the design and analysis of a 2.5-MW, 5000-rpm electric motor with a slotted armature employing REBCO high-temperature superconductors (HTS). The alternating current and field in the armature induces AC losses in the superconductors, requiring cryogenic cooling. Therefore, the aim is to design a machine with sufficiently low losses to make this cooling realistic, which simultaneously outperforms the state-of-the-art. The reasoning behind the key design choices is presented before the model used for two-dimensional (2-D) finite element analysis (FEA) is described. Then, HTS AC losses are studied with the T-A-formulation, examining the impact of various operating conditions. Aligning the HTS tapes with the field was found to successfully reduce AC losses, while filamentization was only successful for more than 10 filaments. The final design had an estimated efficiency of 99.8%, an active torque density of 50.9 Nm/kg, and a cryogenic cooling power requirement of 0.05% of the output power. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.