Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy.
The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT‐driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment. Herein, a supramolecular prodrug nanoplatform codelivering a photosensitizer and a prodrug of bromodomain‐containing protein 4 inhibitor (BRD4i) JQ1 for combinatory photoimmunotherapy of pancreatic cancer are demonstrated. The nanoparticles are fabricated by host–guest complexation between cyclodextrin‐grafted hyaluronic acid (HA‐CD) and adamantine‐conjugated heterodimers of pyropheophorbide a (PPa) and JQ1, respectively. HA can achieve active tumor targeting by recognizing highly expressed CD44 on the surface of pancreatic tumors. PPa‐mediated PDT can enhance the immunogenicity of the tumor cells and promote intratumoral infiltration of the cytotoxic T lymphocytes. Meanwhile, JQ1 combats PDT‐mediated immune evasion through inhibiting expression of c‐Myc and PD‐L1, which are key regulators of tumor glycolysis and immune evasion. Collectively, this study presents a novel strategy to enhance photoimmunotherapy of the pancreatic cancer by provoking T cells activation and overcoming adaptive immune resistance.
Neoantigen-based cancer vaccines are promising for boosting cytotoxic T lymphocyte (CTL) responses. However, the therapeutic effect of cancer vaccines is severely blunted by functional suppression of the dendritic cells (DCs). Herein, we demonstrated an acid-responsive polymeric nanovaccine for activating the stimulator of interferon genes (STING) pathway and improving cancer immunotherapy. The nanovaccines were fabricated by integrating an acid-activatable polymeric conjugate of the STING agonist and neoantigen into one single nanoplatform. The nanovaccines efficiently accumulated at the lymph nodes for promoting DC uptake and facilitating cytosol release of the neoantigens. Meanwhile, the STING agonist activated the STING pathway in the DCs to elicit interferon-β secretion and to boost T-cell priming with the neoantigen. The nanovaccine dramatically inhibited tumor growth and occurrence of B16-OVA melanoma and 4T1 breast tumors in immunocompetent mouse models. Combination immunotherapy with the nanovaccines and anti-PD-L1 antibody demonstrated further improved antitumor efficacy in a 4T1 breast tumor model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.