SUMMARY The first mathematically unbiased estimates of neocortical cell numbers are presented from the developing pig brain, including a full description of tissue processing and optimal sampling for application of the stereological optical fractionator method in this species. The postnatal development of neocortical neurons and glial cells from the experimental Göttingen minipig was compared with the postnatal development of neocortical neurons in the domestic pig. A significant postnatal development was observed in the Göttingen minipig brain for both neuronal (28%; P=0.01) and glial cells (87%; P<0.01). A corresponding postnatal development of neurons was not detected in the domestic pig brain. The reason for this strain difference is not known. The mean total number of neocortical neurons is 324 million in the adult Göttingen minipig compared with 432 million in the domestic pig. The glial-to-neuron cell ratio is around 2.2 in the adult Göttingen minipig. Based on these results, the domestic pig seems to be a more suitable model for evaluating the effects of developmental insults on human brain growth and neuronal development than the Göttingen minipig.
The aim of this study was to quantify the total number of neurons and glial cells in the mediodorsal nucleus of the thalamus (MD) of 8 newborn human brains, in comparison to 8 adult human brains. The estimates of the cell numbers were obtained using the stereological principles of the optical fractionator. In the case of the adults, the total number of neurons in the entire MD was an average of 41% lower than in the newborn, which was statistically highly significant (P < 0.001). The estimated average total number of neurons in MD thalamus of the newborns was 11.2 million (coefficient of variation [CV] = standard deviation/mean = 0.16), compared with the adults' 6.43 million (CV = 0.15). The glial cell numbers were substantially higher in the adult brains, with an increase of almost 4 times from 10.6 million at birth to 36.3 million in the fully developed adult brain. This is the first demonstration of a higher number of human neurons in the brain of newborns compared with the adult.
The postnatal development of total number and perikaryon volume of cerebellar Purkinje cells was estimated in the Göttingen minipig cerebellar cortex using a new stereological approach, the vertical bar fractionator. Data were obtained from the brains of five neonate and five adult female Göttingen minipigs. The total number of Purkinje cells ranged from 1.83 × 10 6 in the neonate to 2.82 × 10 6 in the adult Göttingen minipig. The numberweighted mean perikaryon volume of Purkinje cells increased concurrently from around 6800 µ m 3 in the neonate to 17 600 µ m 3 in the adult. The study demonstrates that a pronounced postnatal neurogenesis in Purkinje cell number and perikaryon volume is part of the growth and development of the cerebellum in the Göttingen minipig.The Purkinje cells of the Göttingen minipig were found to be substantially large compared with human and represents the largest cells described hitherto from mammalian cerebella. The vertical fractionator is a new sampling technique, which allows the combination of a fractionator design on vertical bar sections excluding exhaustive sampling and bias from artificial edges. By design, the sections are perfect stereological vertical sections and provide the basis for unbiased estimates of total number of structural entities in the brain, including surface area, fibre length and particle volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.