Deleterious 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions are introduced into nucleic acids by methylating agents. It was recently demonstrated that the E. coli AlkB protein and a human homolog, hABH3, can demethylate these lesions both in DNA and RNA. To elucidate the biological significance of the RNA repair, we have tested whether such repair can rescue the function of chemically methylated RNA. We demonstrate that a methylation-induced block in translation of an mRNA can be readily relieved by treatment with AlkB and hABH3 prior to translation. Furthermore, we show that chemical methylation of tRNAPhe inhibits aminoacylation and translation, but that the inhibition can be reversed by AlkB and hABH3. AlkB-mediated repair of 1-meA in tRNA was also observed in E. coli in vivo. Our data demonstrate that AlkB proteins can mediate functional recovery of RNA exposed to methylation damage, supporting the notion that RNA repair is important.
AlkB homolog 1 (ALKBH1) is one of nine members of the family of mammalian AlkB homologs. Most Alkbh1−/− mice die during embryonic development, and survivors are characterized by defects in tissues originating from the ectodermal lineage. In this study, we show that deletion of Alkbh1 prolonged the expression of pluripotency markers in embryonic stem cells and delayed the induction of genes involved in early differentiation. In vitro differentiation to neural progenitor cells (NPCs) displayed an increased rate of apoptosis in the Alkbh1−/− NPCs when compared with wild-type cells. Whole-genome expression analysis and chromatin immunoprecipitation revealed that ALKBH1 regulates both directly and indirectly, a subset of genes required for neural development. Furthermore, our in vitro enzyme activity assays demonstrate that ALKBH1 is a histone dioxygenase that acts specifically on histone H2A. Mass spectrometric analysis demonstrated that histone H2A from Alkbh1−/− mice are improperly methylated. Our results suggest that ALKBH1 is involved in neural development by modifying the methylation status of histone H2A. Stem Cells 2012;30:2672–2682
Background Eschericia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.Methods and FindingsIn the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1−/− and heterozygous Alkbh1+/− offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5–10% of the tubules in Alkbh1−/− adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations.ConclusionsGenetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.