Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K + , Ca 2+ and Mg 2+ ) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K + buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K + is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Graphical Abstract Highlights d Behavioral state transitions is paralleled by a cortex-wide increase in [K + ] o d Increased [K + ] o depolarizes cortical neurons and amplifies their excitability in vitro d State-dependent visual gain modulation is recreated by local changes in [K + ] o d Increasing motor cortical [K + ] o enhances L5 spiking and improves motor performance SUMMARY Brain state fluctuations modulate sensory processing, but the factors governing state-dependent neural activity remain unclear. Here, we tracked the dynamics of cortical extracellular K + concentrations ([K + ] o ) during awake state transitions and manipulated [K + ] o in slices, during visual processing, and during skilled motor execution. When mice transitioned from quiescence to locomotion, [K + ] o increased by 0.6À1.0 mM in all cortical areas analyzed, and this preceded locomotion by 1 s. Emulating the state-dependent [K + ] o increase in cortical slices caused neuronal depolarization and enhanced input-output transformation. In vivo, locomotion increased the gain of visually evoked responses in layer 2/3 of visual cortex; this effect was recreated by imposing a [K + ] o increase. Elevating [K + ] o in the motor cortex increased movementinduced neuronal spiking in layer 5 and improved motor performance. Thus, [K + ] o increases in a cortex-wide state-dependent manner, and this [K + ] o increase affects both sensory and motor processing through the dynamic modulation of neural activity.
Visual features extracted by retinal circuits are streamed into higher visual areas (HVAs) after being processed along the visual hierarchy. However, how specialized neuronal representations of HVAs are built, based on retinal output channels, remained unclear. Here, we addressed this question by determining the effects of genetically disrupting retinal direction selectivity on motion-evoked responses in visual stages from the retina to HVAs in mice. Direction-selective (DS) cells in the rostrolateral (RL) area that prefer higher temporal frequencies, and that change direction tuning bias as the temporal frequency of a stimulus increases, are selectively reduced upon retinal manipulation. DS cells in the primary visual cortex projecting to area RL, but not to the posteromedial area, were similarly affected. Therefore, the specific connectivity of cortico-cortical projection neurons routes feedforward signaling originating from retinal DS cells preferentially to area RL. We thus identify a cortical processing stream for motion computed in the retina.
Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakefulness. However, because neuronal activity and extracellular ion concentrations are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states are prompted by ionic changes. Although waking is indicative of a shift from stable to chaotic neuronal firing patterns, we illustrate that the properties of chaotic dynamics ensure that the transition between states is smooth and robust to noise.
We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca2+ signaling in response to activation of the noradrenergic system, but whether astrocytic Ca2+ signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca2+ signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.