In this paper, we investigate the security threats in mobile edge computing (MEC) of Internet of things, and propose a deep-learning (DL)-based physical (PHY) layer authentication scheme which exploits channel state information (CSI) to enhance the security of MEC system via detecting spoofing attacks in wireless networks. Moreover, three gradient descent algorithms are adopted to accelerate the training of deep neural networks, which enables smaller computation overheads and lower energy consumptions. In addition, the maximum likelihood function of multi-user authentication method is derived, which explains why cross entropy is chosen as the loss function. The vectorization cost function is also derived. The mini batch scheme and 2 regularization are adopted to improve training accuracy and avoid over-fitting, respectively. Moreover, the simulation and experimental results show that the DL-based PHY-layer authentication approaches can distinguish multiple legitimate edge nodes from malicious nodes and attacker by CSIs, effectively. Our proposed method supports a better performance compared with the traditional hypothesis test based method.INDEX TERMS Mobile edge computing (MEC), the Internet of things (IoT), PHY-layer authentication, deep neural network (DNN), multi-user.
This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.