Neuroinflammation, for which microglia are the predominant contributors, is a significant risk factor for cognitive dysfunction. Riboflavin (also known as vitamin B2) ameliorates cognitive impairment via anti‐oxidative stress and anti‐inflammation properties; however, the underlying mechanisms linking riboflavin metabolism and microglial function in cognitive impairment remain unclear. Here, it is demonstrated that riboflavin kinase (RFK), a critical enzyme in riboflavin metabolism, is specifically expressed in microglia. An intermediate product of riboflavin, flavin mononucleotide (FMN), inhibited RFK expression via regulation of lysine‐specific methyltransferase 2B (KMT2B). FMN supplementation attenuated the pro‐inflammatory TNFR1/NF‐κB signaling pathway, and this effect is abolished by KMT2B overexpression. To improve the limited anti‐inflammatory efficiency of free FMN, a biomimetic microglial nanoparticle strategy (designated as MNPs@FMN) is established, which penetrated the blood brain barrier with enhanced microglial‐targeted delivery efficiency. Notably, MNPs@FMN ameliorated cognitive impairment and dysfunctional synaptic plasticity in a lipopolysaccharide‐induced inflammatory mouse model and in a 5xFAD mouse model of Alzheimer's disease. Taken together, biomimetic microglial delivery of FMN may serve as a potential therapeutic approach for inflammation‐dependent cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.