Unknown bridge foundations pose a significant safety risk due to stream scour and erosion. Records from older structures may be non‐existent, incomplete or incorrect. We evaluate 2D and 3D electrical resistivity imaging (ERI) as a means to reliably identify the depth of unknown bridge foundations. A survey procedure is described for mixed terrain/water environments in the presence of rough terrain. Some electrodes are installed on the stream banks while others are adapted for underwater use. Tests were conducted at five field sites, including three roadway bridges, a geotechnical test site and a railway bridge, containing drilled shafts and spread footings of both known and unknown depth extent. The 2D data acquisition was carried out in the dipole‐dipole configuration. The 2D ERI method resolved the shape and depth extent of the larger bridge foundations but, with less accuracy, the shape and depth extent of the smaller foundations. The 3D ERI method is time‐consuming and does not add sufficient additional value over 2D ERI to become a practical tool for unknown bridge foundation investigations. The 2D ERI method is a cost‐effective geophysical method that is relatively easy to use by bridge engineers.
Occasionally, a selected site suitable for landfill construction is severely protested against by locals. This issue can cause the proposed landfill to be relocated to an environmentally sensitive area. The proposed Khon Kaen waste disposal site has been planned as an integrated municipal solid waste management system, although the site is situated in an environmentally sensitive area. A site assessment can guarantee the suitability of waste disposal construction, with procedures that aim to assess the potential of geological and hydrogeological characteristics, geological barriers, geotechnical properties of material for landfill construction and groundwater conditions for future monitoring of such facilities. The study area is located on foothills where no geohazard or seismic impacts have been recorded. The geology is composed of sandstone, siltstone, and mudstone bedrocks mostly overlain by unconsolidated sediments. The natural geological barriers are clay and regolith. The clay layer lies locally and is rather thin, at around 2–3 m thickness. The study area is situated in an area that is highly vulnerable to groundwater pollution. The distinct weaknesses of this site along the foothill are a prominent transport path of shallow flows; high groundwater fluctuation, especially during the rainy season; that it is a recharge area with a high fracture zone; and the high permeability of colluvium. The material characteristics in the site make it suitable for use as landfill cover and liner. Following compaction, the coefficient of permeability ranges from 1.2 × 10−7 to 7.1 × 10−7 cm/s, which is acceptably impervious.
Non-marine Cretaceous rocks are widespread in northeastern Thailand and is well known as "the red bed" Khorat Group. The Sao Khua Formation is in the upper half of the Khorat Group which is comprised of six formations. This formation was named and defined at the type section for the rocks between the restricted PhraWihan Formation and the Phu Phan Formation in the drainage area of the Huai Sao Khua, an intermittent stream that flows westward parallel to the highway between Nong Bua Lamphu and UdonThani Provinces. It contains richest and most diverse vertebrate and invertebrate Mesozoic fossils in Thailand. The Sao Khua Formation is characterized by the sequence of the fining-upward successions of at least 4 -5 megacycles throughout the formation with the total thickness ranging between 400 -700 meters. Each cycle starts with a channel lag conglomerate which the clasts consist totally of re-worked calcrete nodules. The conglomerates were overlain by fine-to medium-grained sandstones of point bar deposit. Finally, the top part of each cycle was covered by a succession of fine-grained floodplain deposit that makes up 60% -70% of the formation. Paleosols are commonly found in the Sao Khua Formation within the floodplain sequence and their geochemistry indicates a semi-arid paleoclimate. Based on lithostratigraphy, the Sao Khua Formation is interpreted to have been deposited by a meandering river system under a semi-arid climate condition. The age of the formation is assigned as the Hauterivian -Late Barremian based on vertebrate and bivalves fossils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.