Most state-of-the-art action localization systems process each action proposal individually, without explicitly exploiting their relations during learning. However, the relations between proposals actually play an important role in action localization, since a meaningful action always consists of multiple proposals in a video. In this paper, we propose to exploit the proposal-proposal relations using Graph Convolutional Networks (GCNs). First, we construct an action proposal graph, where each proposal is represented as a node and their relations between two proposals as an edge. Here, we use two types of relations, one for capturing the context information for each proposal and the other one for characterizing the correlations between distinct actions. Then we apply the GCNs over the graph to model the relations among different proposals and learn powerful representations for the action classification and localization. Experimental results show that our approach significantly outperforms the state-of-the-art on THUMOS14 (49.1% versus 42.8%). Moreover, augmentation experiments on ActivityNet also verify the efficacy of modeling action proposal relationships.
We addressed the challenging task of video question answering, which requires machines to answer questions about videos in a natural language form. Previous state-of-the-art methods attempt to apply spatio-temporal attention mechanism on video frame features without explicitly modeling the location and relations among object interaction occurred in videos. However, the relations between object interaction and their location information are very critical for both action recognition and question reasoning. In this work, we propose to represent the contents in the video as a location-aware graph by incorporating the location information of an object into the graph construction. Here, each node is associated with an object represented by its appearance and location features. Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action. As the graph is built on objects, our method is able to focus on the foreground action contents for better video question answering. Lastly, we leverage an attention mechanism to combine the output of graph convolution and encoded question features for final answer reasoning. Extensive experiments demonstrate the effectiveness of the proposed methods. Specifically, our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA and MSVD-QA datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.