The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of clinically used anticancer drugs. Therefore, the discovery of novel and effective drugs is still an extremely primary mission. Naphthalimide family is one of the highly active anticancer drug based upon effective intercalator with DNA. In this article, we review the discovery and development of 1,8-naphthalimide moiety, and, especially, pay much attention to the structural modifications and structure activity relationships. The review demonstrates how modulation of the moiety affecting naphthalimide compound for DNA binding that is achieved to afford a profile of antitumor activity. The DNA binding of imide and ring substitution at naphthalimide, bisnaphthalimide, naphthalimide-metal complexes is achieved by molecular recognition through intercalation mode. Thus, this synthetic/natural small molecule can act as a drug when activation or inhibition of DNA function, is required to cure or control the cancer disease. The present study is a review of the advances in 1,8-naphthalimide-related research, with a focus on how such derivatives are intercalated into DNA for their anticancer activities.
Novel silica-coated ferrite nanoparticles supported with montmorillonite (K10) have been prepared and explored for their catalytic activity for the O, N, and S-acylation reactions under solvent-free conditions.
Besides worthy development in cancer therapy, cancer is still one of the leading causes of death, worldwide. The future burden of cancer will probably be even larger because people are adopting poor lifestyles with poor diet, frequently smoking and less physical activity. The effective anticancer drugs having efficacy and selectivity with low toxicity is still a challenge for the scientific fraternity. The advances in the cancer study have its origin on the availability of different types of experimental model systems that review the various forms of this disease. Cell lines emerge as a feasible alternative for anticancer activities, being at the same time easy to manipulate and molecularly characterize. Heterocycles are key structural components of many of the anti-cancer drugs available on the market today. Indeed, of the novel molecular anti-cancer agents approved by the FDA between 2010 and 2017, almost two-thirds contained heterocyclic rings within their structures. This review summarizes and provides updated literature on heterocyclic compounds using various cancer cell lines reported during the period of 2014-2017 together with the structure-activity relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.