During pregnancy, placental protein-13 (galectin-13) is highly expressed in the placenta and fetal tissue, and less so in maternal serum that is related to pre-eclampsia. To understand galectin-13 function at the molecular level, we solved its crystal structure and discovered that its dimer is stabilized by two disulfide bridges between Cys136 and Cys138 and six hydrogen bonds involving Val135, Val137, and Gln139. Native PAGE and gel filtration demonstrate that this is not a crystallization artifact because dimers also form in solution. Our biochemical studies indicate that galectin-13 ligand binding specificity is different from that of other galectins in that it does not bind β-galactosides. This is partly explained by the presence of Arg53 rather than His53 at the bottom of the carbohydrate binding site in a position that is crucial for interactions with β-galactosides. Mutating Arg53 to histidine does not re-establish normal β-galactoside binding, but rather traps cryoprotectant glycerol molecules within the ligand binding site in crystals of the R53H mutant. Moreover, unlike most other galectins, we also found that GFP-tagged galectin-13 is localized within the nucleus of HeLa and 293 T cells. Overall, galectin-13 appears to be a new type of prototype galectin with distinct properties.
Galectin-10 (Gal-10) which forms Charcot-Leyden crystals in vivo, is crucial to regulating lymph cell function. Here, we solved the crystal structures of Gal-10 and eight variants at resolutions of 1.55-2.00 Å. Structural analysis and size exclusion chromatography demonstrated that Gal-10 dimerizes with a novel global shape that is different from that of other prototype galectins (e.g., Gal-1, -2 and -7). In the Gal-10 dimer, Glu33 from one subunit modifies the carbohydrate-binding site of another, essentially inhibiting disaccharide binding. Nevertheless, glycerol (and possibly other small hydroxylated molecules) can interact with residues at the ligand binding site, with His53 being the most crucial for binding. Alanine substitution of the conserved Trp residue (Trp72) that is crucial to saccharide binding in other galectins, actually leads to enhanced erythrocyte agglutination, suggesting that Trp72 negatively regulates Gal-10 ligand binding. Overall, our crystallographic and biochemical results provide insight into Gal-10 ligand binding specificity.
Programmed cell death 1 (PD-1) monoclonal antibodies have been approved by regulatory agencies for the treatment of various types of cancer, and the mechanism involves the restoration of T cell functions. We report herein the X-ray crystal structure of a fully human monoclonal antibody mAb059c fragment antigen-binding (Fab) in complex with the PD-1 extracellular domain (ECD) at a resolution of 1.70 Å. Structural analysis indicates 1) an epitope, comprising fragments from the C’D, BC and FG loops of PD-1, contributes to mAb059c interaction, 2) an unique conformation of the C’D loop and a different orientation of R86 enabling the capture of PD-1 by the antibody complementarity determining region (CDR) and the formation of one salt-bridge contact – ASP101(HCDR3):ARG86(PD-1), and 3) the contact of FG with light chain (LC) CDR3 is maintained by a second salt-bridge and two backbone hydrogen bonds. Interface analysis reveals that N-glycosylation sites 49, 74 and 116 on PD-1 do not contact mAb059c; while N58 in the BC loop is recognized by mAb059c heavy chain CDR1 and CDR2. Mutation of N58 attenuated mAb059c binding to PD-1. These findings and the novel anti-PD-1 antibody will facilitate better understanding of the mechanisms of the molecular recognition of PD-1 receptor by anti-PD-1 mAb and, thereby, enable the development of new therapeutics with an expanded spectrum of efficacy for unmet medical needs.
Under the background of carbon peak and carbon neutralization, it is vital to study the impact of digital economy on carbon emission reduction. Based on a provincial panel data from 2013 to 2019, this paper establishes a dynamic panel model, a dynamic spatial autoregressive model, and a dynamic threshold model to study the impact of digital economy on carbon emission intensity. Our findings show that digital economy has a significant inhibitory effect on carbon emission intensity. Results of regional heterogeneity show that the central region can transform the impact of digital economy on carbon emission reduction more efficiently. After adding the time lag term of carbon emission intensity, the impact coefficient of digital economy is still significant. Carbon emission intensity has obvious spatial effect, and the carbon emission of adjacent areas will significantly inhibit local carbon emission reduction activities. Under the threshold of innovation and environmental regulation, the emission reduction effect of digital economy is different. For regions with low technological level, digital economy is difficult to give full scope to its emission reduction advantages. At the same time, stricter environmental regulations can cooperate with digital economy to accelerate regional carbon emission reduction. Therefore, China should continue to improve the construction of digital infrastructure and promote the reform and innovation of enterprise digital technology in order to release the carbon emission reduction effect of digital economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.