Diabetes mellitus and osteoporosis are closely related and have complex influencing factors. The impact of anti-diabetic drugs on bone metabolism has received more and more attention. Type 2 diabetes mellitus (T2DM) would lead to bone fragility, high risk of fracture, poor bone repair and other bone-related diseases. Furthermore, hypoglycemic drugs used to treat T2DM may have notable detrimental effects on bones. Thus, the clinically therapeutic strategy for T2DM should not only effectively control the patient’s glucose levels, but also minimize the complications of bone metabolism diseases. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are novel and promising drug for the treatment of T2DM. Some studies have found that GLP-1RAs may play an anti-osteoporotic effect by controlling blood sugar levels, promoting bone formation and inhibiting bone resorption. However, in clinical practice, the specific effects of GLP-1RA on fracture risk and osteoporosis have not been clearly defined and evidenced. This review summarizes the current research findings by which GLP-1RAs treatment of diabetic osteoporosis, postmenopausal osteoporosis and glucocorticoid-induced osteoporosis and describes possible mechanisms, such as GLP-1R/MAPK signaling pathway, GLP-1R/PI3K/AKT signaling pathway and Wnt/β-catenin pathway, that are associated with GLP-1RAs and osteoporosis. The specific role and related mechanisms of GLP-1RAs in the bone metabolism of patients with different types of osteoporosis need to be further explored and clarified.
Cerebral palsy (CP) is a kind of movement and posture disorder syndrome in early childhood. In recent years, human mesenchymal stem cell (hMSC) transplantation has become a promising therapeutic strategy for CP. However, clinical evidence is still limited and controversial about clinical efficacy of hMSC therapy for CP. Our aim is to evaluate the efficacy and safety of hMSC transplantation for children with CP using a meta-analysis of randomized controlled trials (RCTs). We conducted a systematic literature search including Embase, PubMed, ClinicalTrials.gov, Cochrane Controlled Trials Register databases, Chinese Clinical Trial Registry, and Web of Science from building database to February 2020. We used Cochrane bias risk assessment for the included studies. The result of pooled analysis showed that hMSC therapy significantly increased gross motor function measure (GMFM) scores (standardized mean difference SMD=1.10, 95%CI=0.66‐1.53, P<0.00001, high-quality evidence) and comprehensive function assessment (CFA) (SMD=1.30, 95%CI=0.71‐1.90, P<0.0001, high-quality evidence) in children with CP, compared with the control group. In the subgroup analysis, the results showed that hMSC therapy significantly increased GMFM scores of 3, 6, and 12 months and CFA of 3, 6, and 12 months. Adverse event (AE) of upper respiratory infection, diarrhea, and constipation was not statistically significant between the two groups. This meta-analysis synthesized the primary outcomes and suggested that hMSC therapy is beneficial, effective, and safe in improving GMFM scores and CFA scores in children with CP. In addition, subgroup analysis showed that hMSC therapy has a lasting positive benefit for CP in 3, 6, and 12 months.
Degenerative disc disease (DDD) can cause severe low back pain, which will have a serious negative impact on the ability to perform daily tasks or activities. For the past few years, mesenchymal stem cell (MSC) transplantation has emerged as a promising strategy for the treatment of DDD. However, the clinical efficacy of MSC in the treatment of DDD still lacks clinical evidence and is controversial. We conducted a meta-analysis with randomized controlled trials (RCTs) to evaluate the clinical efficacy and safety of MSC transplantation in patients with DDD. We searched major databases using terms from the database’s inception through March 2021. The Cochrane bias risk assessment tool was used to assess quality. The analysis showed that MSC therapy could decrease visual analog scale (VAS) scores ( SMD = − 0.50 , 95 % CI = − 0.68 ~ − 0.33 , P < 0.00001 ) and Oswestry Disability Index (ODI) scores ( SMD = − 0.27 , 95 % CI = − 0.44 ~ − 0.09 , P = 0.003 ). The outcomes with subgroup analysis showed that MSC therapy could decrease VAS scores in 3 months ( P = 0.001 ), 6 months ( P = 0.01 ), 12 months ( P = 0.02 ), and ≥24 months ( P = 0.002 ) and ODI scores in ≥24 months ( P = 0.006 ). Pooled analysis showed that MSC therapy has a higher ratio of patients at most thresholds but particularly at the MIC (minimally important change) ( P = 0.0002 ) and CSC (clinically significant change) ( P = 0.0002 ) in VAS and MIC ( P = 0.0005 ) and CSC ( P = 0.001 ) pain responders in ODI. Adverse events (AE) of treatment-emergent adverse events (TEAE), back pain, arthralgia, and muscle spasms were not statistically significant between the two groups. However, our further statistical analysis showed that MSC therapy may induce AE of TEAE related to study treatment ( OR = 3.05 , 95 % CI = 1.11 ~ 8.40 , P = 0.03 ). In conclusion, this study pooled the main outcomes and showed that MSC therapy could significantly decrease VAS and ODI scores in patients with DDD. Distinctly, the findings of this meta-analysis suggest a novel therapeutic strategy for patients with chronic low back pain (LBP) and lumbar dysfunction by DDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.