The enzyme-linked immunosorbent assay (ELISA) is widely used in various fields to detect specific biomarkers. However, ELISA tests have limited detection sensitivity (≥ 1 pM), which is insufficiently sensitive for the detection of small amounts of biomarkers in the early stages of disease or infection. Herein, a method for the rapid and highly sensitive detection of specific antigens, using temperature-responsive liposomes (TLip) containing a squaraine dye that exhibits fluorescence at the phase transition temperature of the liposomes, was developed. A proof-of-concept study using biotinylated TLip and a streptavidin-immobilized microwell plate showed that the TLip bound to the plate via specific molecular recognition could be distinguished from unbound TLip within 1 min because of the difference in the heating time required for the fluorescence emission of TLip. This system could be used to detect prostate specific antigen (PSA) based on a sandwich immunosorbent assay using detection and capture antibodies, in which the limit of detection was as low as 27.6 ag/mL in a 100-μL PSA solution, 0.97 aM in terms of molar concentration. The present temperature-responsive liposome-linked immunosorbent assay provides an advanced platform for the rapid and highly sensitive detection of biomarkers for use in diagnosis and biological inspections.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the etiological agent of coronavirus disease 2019 (COVID-19), has infected more than 340 million people since the outbreak of the pandemic in 2019, resulting in approximately 55 million deaths. The rapid and effective diagnosis of COVID-19 patients is vital to prevent the spread of the disease. In a previous study, we reported a novel temperature-responsive liposome-linked immunosorbent assay (TLip-LISA) using biotinylated-TLip that exhibited high detection sensitivity for the prostate-specific antigen. Herein, we used immunoglobulin-TLip (IgG-TLip), in which the antibodies were directly conjugated to the liposomal surface to simplify pretreatment procedures and reduce the detection time for SARS-CoV-2. The results indicated that TLip-LISA could detect the recombinant nucleocapsid protein and the nucleocapsid protein in inactivated virus with 20 min incubation time in total, and the limit of detection was calculated to be 2.2 and 1.0 pg/mL, respectively. Therefore, TLip-LISA has high potential to be used in clinic for rapid diagnosis and disease control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.