Cytosolic innate immune sensing is a cornerstone of innate immunity in mammalian cells and provides a surveillance system for invading pathogens and endogenous danger signals. The NAIP‐NLRC4 inflammasome responds to cytosolic flagellin, and the inner rod and needle proteins of the type 3 secretion system of bacteria. This complex induces caspase‐1‐dependent proteolytic cleavage of the proinflammatory cytokines IL‐1β and IL‐18, and the pore‐forming protein gasdermin D, leading to inflammation and pyroptosis, respectively. Localized responses triggered by the NAIP‐NLRC4 inflammasome are largely protective against bacterial pathogens, owing to several mechanisms, including the release of inflammatory mediators, liberation of concealed intracellular pathogens for killing by other immune mechanisms, activation of apoptotic caspases, caspase‐7, and caspase‐8, and expulsion of an entire infected cell from the mammalian host. In contrast, aberrant activation of the NAIP‐NLRC4 inflammasome caused by de novo gain‐of‐function mutations in the gene encoding NLRC4 can lead to macrophage activation syndrome, neonatal enterocolitis, fetal thrombotic vasculopathy, familial cold autoinflammatory syndrome, and even death. Some of these clinical manifestations could be treated by therapeutics targeting inflammasome‐associated cytokines. In addition, the NAIP‐NLRC4 inflammasome has been implicated in the pathogenesis of colorectal cancer, melanoma, glioma, and breast cancer. However, no consensus has been reached on its function in the development of any cancer types. In this review, we highlight the latest advances in the activation mechanisms and structural assembly of the NAIP‐NLRC4 inflammasome, and the functions of this inflammasome in different cell types. We also describe progress toward understanding the role of the NAIP‐NLRC4 inflammasome in infectious diseases, autoinflammatory diseases, and cancer.
Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens.
In antibody responses, mutated germinal center B (B GC ) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of B GC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (T FH ) cell–derived signals, in particular costimulation through CD40. Here, we demonstrate that the T FH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting B GC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. B GC cells, compared with non-B GC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)–mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in B GC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in B GC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.